Implementasi Block Recurrent Transformer - Pytorch. Sorotan dari makalah ini adalah kemampuannya yang dilaporkan untuk mengingat sesuatu hingga 60 ribu token yang lalu.
Desain ini adalah SOTA untuk penelitian transformator berulang, afaict.
Ini juga akan mencakup perhatian kilat serta ingatan yang diarahkan hingga 250 ribu token menggunakan ide dari makalah ini
$ pip install block-recurrent-transformer-pytorch
import torch
from block_recurrent_transformer_pytorch import BlockRecurrentTransformer
model = BlockRecurrentTransformer (
num_tokens = 20000 , # vocab size
dim = 512 , # model dimensions
depth = 6 , # depth
dim_head = 64 , # attention head dimensions
heads = 8 , # number of attention heads
max_seq_len = 1024 , # the total receptive field of the transformer, in the paper this was 2 * block size
block_width = 512 , # block size - total receptive field is max_seq_len, 2 * block size in paper. the block furthest forwards becomes the new cached xl memories, which is a block size of 1 (please open an issue if i am wrong)
num_state_vectors = 512 , # number of state vectors, i believe this was a single block size in the paper, but can be any amount
recurrent_layers = ( 4 ,), # where to place the recurrent layer(s) for states with fixed simple gating
use_compressed_mem = False , # whether to use compressed memories of a single block width, from https://arxiv.org/abs/1911.05507
compressed_mem_factor = 4 , # compression factor of compressed memories
use_flash_attn = True # use flash attention, if on pytorch 2.0
)
seq = torch . randint ( 0 , 2000 , ( 1 , 1024 ))
out , mems1 , states1 = model ( seq )
out , mems2 , states2 = model ( seq , xl_memories = mems1 , states = states1 )
out , mems3 , states3 = model ( seq , xl_memories = mems2 , states = states2 )
Pertama pip install -r requirements.txt
, lalu
$ python train.py
menggunakan bias posisi dinamis
menambahkan peningkatan kekambuhan
menyiapkan blok perhatian lokal, seperti di makalah
kelas transformator pembungkus untuk pelatihan
jaga generasi dengan pengulangan di RecurrentTrainWrapper
tambahkan kemampuan untuk keluar ke seluruh memori dan status selama setiap langkah segmen selama pelatihan
uji sistem lengkap di enwik8 secara lokal dan hapus status dan memori serta lihat efeknya secara langsung
pastikan perhatian mengizinkan kunci/nilai kepala tunggal juga
menjalankan beberapa percobaan gerbang tetap pada transformator biasa - tidak berhasil
mengintegrasikan perhatian flash
masker perhatian cache + penyematan putar
tambahkan kenangan terkompresi
mengunjungi kembali mantan
coba rutekan memori jarak jauh hingga 250k menggunakan penurunan koordinat (Wright et al.)
@article { Hutchins2022BlockRecurrentT ,
title = { Block-Recurrent Transformers } ,
author = { DeLesley S. Hutchins and Imanol Schlag and Yuhuai Wu and Ethan Dyer and Behnam Neyshabur } ,
journal = { ArXiv } ,
year = { 2022 } ,
volume = { abs/2203.07852 }
}
@article { Shazeer2019FastTD ,
title = { Fast Transformer Decoding: One Write-Head is All You Need } ,
author = { Noam M. Shazeer } ,
journal = { ArXiv } ,
year = { 2019 } ,
volume = { abs/1911.02150 }
}
@inproceedings { Sun2022ALT ,
title = { A Length-Extrapolatable Transformer } ,
author = { Yutao Sun and Li Dong and Barun Patra and Shuming Ma and Shaohan Huang and Alon Benhaim and Vishrav Chaudhary and Xia Song and Furu Wei } ,
year = { 2022 }
}
@inproceedings { dao2022flashattention ,
title = { Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness } ,
author = { Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{'e}, Christopher } ,
booktitle = { Advances in Neural Information Processing Systems } ,
year = { 2022 }
}
@inproceedings { Ainslie2023CoLT5FL ,
title = { CoLT5: Faster Long-Range Transformers with Conditional Computation } ,
author = { Joshua Ainslie and Tao Lei and Michiel de Jong and Santiago Ontan'on and Siddhartha Brahma and Yury Zemlyanskiy and David Uthus and Mandy Guo and James Lee-Thorp and Yi Tay and Yun-Hsuan Sung and Sumit Sanghai } ,
year = { 2023 }
}
Memori adalah Perhatian Melalui Waktu - Alex Graves