Implementasi NÜWA, jaringan perhatian canggih untuk sintesis teks ke video, di Pytorch. Ini juga berisi perluasan ke pembuatan video dan audio, menggunakan pendekatan dekoder ganda.
Yannic Kilcher
Pembaca Dalam
Maret 2022 - Melihat tanda-tanda kehidupan dengan versi sulit bergerak mnist
April 2022 - Tampaknya metode berbasis difusi telah mengambil alih tahta baru SOTA. Namun, saya akan melanjutkan dengan NUWA, memperluasnya untuk menggunakan kode multi-kepala + transformator sebab-akibat hierarki. Saya pikir arah tersebut belum dimanfaatkan untuk meningkatkan pekerjaan ini.
$ pip install nuwa-pytorch
Pertama latih VAE
import torch
from nuwa_pytorch import VQGanVAE
vae = VQGanVAE (
dim = 512 ,
channels = 3 , # default is 3, but can be changed to any value for the training of the segmentation masks (sketches)
image_size = 256 , # image size
num_layers = 4 , # number of downsampling layers
num_resnet_blocks = 2 , # number of resnet blocks
vq_codebook_size = 8192 , # codebook size
vq_decay = 0.8 # codebook exponential decay
)
imgs = torch . randn ( 10 , 3 , 256 , 256 )
# alternate learning for autoencoder ...
loss = vae ( imgs , return_loss = True )
loss . backward ()
# and the discriminator ...
discr_loss = vae ( imgs , return_discr_loss = True )
discr_loss . backward ()
# do above for many steps
# return reconstructed images and make sure they look ok
recon_imgs = vae ( imgs )
Kemudian, dengan VAE yang Anda pelajari
import torch
from nuwa_pytorch import NUWA , VQGanVAE
# autoencoder
vae = VQGanVAE (
dim = 64 ,
num_layers = 4 ,
image_size = 256 ,
num_conv_blocks = 2 ,
vq_codebook_size = 8192
)
# NUWA transformer
nuwa = NUWA (
vae = vae ,
dim = 512 ,
text_num_tokens = 20000 , # number of text tokens
text_enc_depth = 12 , # text encoder depth
text_enc_heads = 8 , # number of attention heads for encoder
text_max_seq_len = 256 , # max sequence length of text conditioning tokens (keep at 256 as in paper, or shorter, if your text is not that long)
max_video_frames = 10 , # number of video frames
image_size = 256 , # size of each frame of video
dec_depth = 64 , # video decoder depth
dec_heads = 8 , # number of attention heads in decoder
dec_reversible = True , # reversible networks - from reformer, decoupling memory usage from depth
enc_reversible = True , # reversible encoders, if you need it
attn_dropout = 0.05 , # dropout for attention
ff_dropout = 0.05 , # dropout for feedforward
sparse_3dna_kernel_size = ( 5 , 3 , 3 ), # kernel size of the sparse 3dna attention. can be a single value for frame, height, width, or different values (to simulate axial attention, etc)
sparse_3dna_dilation = ( 1 , 2 , 4 ), # cycle dilation of 3d conv attention in decoder, for more range
shift_video_tokens = True # cheap relative positions for sparse 3dna transformer, by shifting along spatial dimensions by one
). cuda ()
# data
text = torch . randint ( 0 , 20000 , ( 1 , 256 )). cuda ()
video = torch . randn ( 1 , 10 , 3 , 256 , 256 ). cuda () # (batch, frames, channels, height, width)
loss = nuwa (
text = text ,
video = video ,
return_loss = True # set this to True, only for training, to return cross entropy loss
)
loss . backward ()
# do above with as much data as possible
# then you can generate a video from text
video = nuwa . generate ( text = text , num_frames = 5 ) # (1, 5, 3, 256, 256)
Dalam makalah tersebut, mereka juga menyajikan cara untuk mengkondisikan pembuatan video berdasarkan masker segmentasi. Anda juga dapat dengan mudah melakukan ini, asalkan Anda melatih VQGanVAE
pada sketsa sebelumnya.
Kemudian, Anda akan menggunakan NUWASketch
alih-alih NUWA
, yang dapat menerima sketsa VAE sebagai referensi
mantan.
import torch
from nuwa_pytorch import NUWASketch , VQGanVAE
# autoencoder, one for main video, the other for the sketch
vae = VQGanVAE (
dim = 64 ,
num_layers = 4 ,
image_size = 256 ,
num_conv_blocks = 2 ,
vq_codebook_size = 8192
)
sketch_vae = VQGanVAE (
dim = 512 ,
channels = 5 , # say the sketch has 5 classes
num_layers = 4 ,
image_size = 256 ,
num_conv_blocks = 2 ,
vq_codebook_size = 8192
)
# NUWA transformer for conditioning with sketches
nuwa = NUWASketch (
vae = vae ,
sketch_vae = sketch_vae ,
dim = 512 , # model dimensions
sketch_enc_depth = 12 , # sketch encoder depth
sketch_enc_heads = 8 , # number of attention heads for sketch encoder
sketch_max_video_frames = 3 , # max number of frames for sketches
sketch_enc_use_sparse_3dna = True , # whether to use 3d-nearby attention (of full attention if False) for sketch encoding transformer
max_video_frames = 10 , # number of video frames
image_size = 256 , # size of each frame of video
dec_depth = 64 , # video decoder depth
dec_heads = 8 , # number of attention heads in decoder
dec_reversible = True , # reversible networks - from reformer, decoupling memory usage from depth
enc_reversible = True , # reversible encoders, if you need it
attn_dropout = 0.05 , # dropout for attention
ff_dropout = 0.05 , # dropout for feedforward
sparse_3dna_kernel_size = ( 5 , 3 , 3 ), # kernel size of the sparse 3dna attention. can be a single value for frame, height, width, or different values (to simulate axial attention, etc)
sparse_3dna_dilation = ( 1 , 2 , 4 ), # cycle dilation of 3d conv attention in decoder, for more range
cross_2dna_kernel_size = 5 , # 2d kernel size of spatial grouping of attention from video frames to sketches
cross_2dna_dilation = 1 , # 2d dilation of spatial attention from video frames to sketches
shift_video_tokens = True # cheap relative positions for sparse 3dna transformer, by shifting along spatial dimensions by one
). cuda ()
# data
sketch = torch . randn ( 2 , 2 , 5 , 256 , 256 ). cuda () # (batch, frames, segmentation classes, height, width)
sketch_mask = torch . ones ( 2 , 2 ). bool (). cuda () # (batch, frames) [Optional]
video = torch . randn ( 2 , 10 , 3 , 256 , 256 ). cuda () # (batch, frames, channels, height, width)
loss = nuwa (
sketch = sketch ,
sketch_mask = sketch_mask ,
video = video ,
return_loss = True # set this to True, only for training, to return cross entropy loss
)
loss . backward ()
# do above with as much data as possible
# then you can generate a video from sketch(es)
video = nuwa . generate ( sketch = sketch , num_frames = 5 ) # (1, 5, 3, 256, 256)
Repositori ini juga akan menawarkan varian NUWA yang dapat menghasilkan video dan audio. Untuk saat ini, audio perlu dikodekan secara manual.
import torch
from nuwa_pytorch import NUWAVideoAudio , VQGanVAE
# autoencoder
vae = VQGanVAE (
dim = 64 ,
num_layers = 4 ,
image_size = 256 ,
num_conv_blocks = 2 ,
vq_codebook_size = 100
)
# NUWA transformer
nuwa = NUWAVideoAudio (
vae = vae ,
dim = 512 ,
num_audio_tokens = 2048 , # codebook size for audio tokens
num_audio_tokens_per_video_frame = 32 , # number of audio tokens per video frame
cross_modality_attn_every = 3 , # cross modality attention every N layers
text_num_tokens = 20000 , # number of text tokens
text_enc_depth = 1 , # text encoder depth
text_enc_heads = 8 , # number of attention heads for encoder
text_max_seq_len = 256 , # max sequence length of text conditioning tokens (keep at 256 as in paper, or shorter, if your text is not that long)
max_video_frames = 10 , # number of video frames
image_size = 256 , # size of each frame of video
dec_depth = 4 , # video decoder depth
dec_heads = 8 , # number of attention heads in decoder
enc_reversible = True , # reversible encoders, if you need it
dec_reversible = True , # quad-branched reversible network, for making depth of twin video / audio decoder independent of network depth. recommended to be turned on unless you have a ton of memory at your disposal
attn_dropout = 0.05 , # dropout for attention
ff_dropout = 0.05 , # dropout for feedforward
sparse_3dna_kernel_size = ( 5 , 3 , 3 ), # kernel size of the sparse 3dna attention. can be a single value for frame, height, width, or different values (to simulate axial attention, etc)
sparse_3dna_dilation = ( 1 , 2 , 4 ), # cycle dilation of 3d conv attention in decoder, for more range
shift_video_tokens = True # cheap relative positions for sparse 3dna transformer, by shifting along spatial dimensions by one
). cuda ()
# data
text = torch . randint ( 0 , 20000 , ( 1 , 256 )). cuda ()
audio = torch . randint ( 0 , 2048 , ( 1 , 32 * 10 )). cuda () # (batch, audio tokens per frame * max video frames)
video = torch . randn ( 1 , 10 , 3 , 256 , 256 ). cuda () # (batch, frames, channels, height, width)
loss = nuwa (
text = text ,
video = video ,
audio = audio ,
return_loss = True # set this to True, only for training, to return cross entropy loss
)
loss . backward ()
# do above with as much data as possible
# then you can generate a video from text
video , audio = nuwa . generate ( text = text , num_frames = 5 ) # (1, 5, 3, 256, 256), (1, 32 * 5 == 160)
Perpustakaan ini akan menawarkan beberapa utilitas untuk membuat pelatihan lebih mudah. Sebagai permulaan, Anda dapat menggunakan kelas VQGanVAETrainer
untuk melatih VQGanVAE
. Cukup bungkus model dan teruskan jalur folder gambar serta berbagai hyperparameter pelatihan.
import torch
from nuwa_pytorch import VQGanVAE , VQGanVAETrainer
vae = VQGanVAE (
dim = 64 ,
image_size = 256 ,
num_layers = 5 ,
vq_codebook_size = 1024 ,
vq_use_cosine_sim = True ,
vq_codebook_dim = 32 ,
vq_orthogonal_reg_weight = 10 ,
vq_orthogonal_reg_max_codes = 128 ,
). cuda ()
trainer = VQGanVAETrainer (
vae , # VAE defined above
folder = '/path/to/images' , # path to images
lr = 3e-4 , # learning rate
num_train_steps = 100000 , # number of training steps
batch_size = 8 , # batch size
grad_accum_every = 4 # gradient accumulation (effective batch size is (batch_size x grad_accum_every))
)
trainer . train ()
# results and model checkpoints will be saved periodically to ./results
Untuk melatih NUWA, pertama-tama Anda perlu mengatur folder file .gif
dengan file .txt
terkait yang berisi keterangannya. Ini harus diatur seperti itu.
mantan.
video-and-text-data
┣ cat.gif
┣ cat.txt
┣ dog.gif
┣ dog.txt
┣ turtle.gif
┗ turtle.txt
Kemudian Anda akan memuat VQGan-VAE yang telah Anda latih sebelumnya dan latih NUWA dengan kelas GifVideoDataset
dan NUWATrainer
.
import torch
from nuwa_pytorch import NUWA , VQGanVAE
from nuwa_pytorch . train_nuwa import GifVideoDataset , NUWATrainer
# dataset
ds = GifVideoDataset (
folder = './path/to/videos/' ,
channels = 1
)
# autoencoder
vae = VQGanVAE (
dim = 64 ,
image_size = 256 ,
num_layers = 5 ,
num_resnet_blocks = 2 ,
vq_codebook_size = 512 ,
attn_dropout = 0.1
)
vae . load_state_dict ( torch . load ( './path/to/trained/vae.pt' ))
# NUWA transformer
nuwa = NUWA (
vae = vae ,
dim = 512 ,
text_enc_depth = 6 ,
text_max_seq_len = 256 ,
max_video_frames = 10 ,
dec_depth = 12 ,
dec_reversible = True ,
enc_reversible = True ,
attn_dropout = 0.05 ,
ff_dropout = 0.05 ,
sparse_3dna_kernel_size = ( 5 , 3 , 3 ),
sparse_3dna_dilation = ( 1 , 2 , 4 ),
shift_video_tokens = True
). cuda ()
# data
trainer = NUWATrainer (
nuwa = nuwa , # NUWA transformer
dataset = dataset , # video dataset class
num_train_steps = 1000000 , # number of training steps
lr = 3e-4 , # learning rate
wd = 0.01 , # weight decay
batch_size = 8 , # batch size
grad_accum_every = 4 , # gradient accumulation
max_grad_norm = 0.5 , # gradient clipping
num_sampled_frames = 10 , # number of frames to sample
results_folder = './results' # folder to store checkpoints and samples
)
trainer . train ()
Pustaka ini bergantung pada pustaka kuantisasi vektor ini, yang dilengkapi dengan sejumlah peningkatan (peningkatan vqgan, regularisasi buku kode ortogonal, dll). Untuk menggunakan salah satu peningkatan ini, Anda dapat mengonfigurasi parameter kata kunci kuantisasi vektor dengan menambahkan vq_
pada inisialisasi VQGanVAE
.
mantan. sim cosinus diusulkan dalam vqgan yang ditingkatkan
from nuwa_pytorch import VQGanVAE
vae = VQGanVAE (
dim = 64 ,
image_size = 256 ,
num_layers = 4 ,
vq_use_cosine_sim = True
# VectorQuantize will be initialized with use_cosine_sim = True
# https://github.com/lucidrains/vector-quantize-pytorch#cosine-similarity
). cuda ()
@misc { wu2021nuwa ,
title = { N"UWA: Visual Synthesis Pre-training for Neural visUal World creAtion } ,
author = { Chenfei Wu and Jian Liang and Lei Ji and Fan Yang and Yuejian Fang and Daxin Jiang and Nan Duan } ,
year = { 2021 } ,
eprint = { 2111.12417 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { esser2021taming ,
title = { Taming Transformers for High-Resolution Image Synthesis } ,
author = { Patrick Esser and Robin Rombach and Björn Ommer } ,
year = { 2021 } ,
eprint = { 2012.09841 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { iashin2021taming ,
title = { Taming Visually Guided Sound Generation } ,
author = { Vladimir Iashin and Esa Rahtu } ,
year = { 2021 } ,
eprint = { 2110.08791 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { ding2021cogview ,
title = { CogView: Mastering Text-to-Image Generation via Transformers } ,
author = { Ming Ding and Zhuoyi Yang and Wenyi Hong and Wendi Zheng and Chang Zhou and Da Yin and Junyang Lin and Xu Zou and Zhou Shao and Hongxia Yang and Jie Tang } ,
year = { 2021 } ,
eprint = { 2105.13290 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { kitaev2020reformer ,
title = { Reformer: The Efficient Transformer } ,
author = { Nikita Kitaev and Łukasz Kaiser and Anselm Levskaya } ,
year = { 2020 } ,
eprint = { 2001.04451 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}
@misc { shazeer2020talkingheads ,
title = { Talking-Heads Attention } ,
author = { Noam Shazeer and Zhenzhong Lan and Youlong Cheng and Nan Ding and Le Hou } ,
year = { 2020 } ,
eprint = { 2003.02436 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}
@misc { shazeer2020glu ,
title = { GLU Variants Improve Transformer } ,
author = { Noam Shazeer } ,
year = { 2020 } ,
url = { https://arxiv.org/abs/2002.05202 }
}
@misc { su2021roformer ,
title = { RoFormer: Enhanced Transformer with Rotary Position Embedding } ,
author = { Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu } ,
year = { 2021 } ,
eprint = { 2104.09864 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@inproceedings { ho2021classifierfree ,
title = { Classifier-Free Diffusion Guidance } ,
author = { Jonathan Ho and Tim Salimans } ,
booktitle = { NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications } ,
year = { 2021 } ,
url = { https://openreview.net/forum?id=qw8AKxfYbI }
}
@misc { liu2021swin ,
title = { Swin Transformer V2: Scaling Up Capacity and Resolution } ,
author = { Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo } ,
year = { 2021 } ,
eprint = { 2111.09883 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { crowson2022 ,
author = { Katherine Crowson } ,
url = { https://twitter.com/RiversHaveWings/status/1478093658716966912 }
}
Perhatian adalah bentuk kemurahan hati yang paling langka dan paling murni. - Simone Weil