이 저장소는 "자동화된 산림 목록: 3D 딥 러닝을 통한 고밀도 공중 LiDAR 포인트 클라우드 분석"이라는 제목의 논문에 대한 공식 코드를 나타냅니다.
이전 저장소를 참조하세요.
https://github.com/prs-eth/PanopticSegForLargeScalePointCloud
여기에는 발생할 수 있지만 이미 해결된 세부 단계와 문제가 포함되어 있습니다.
이전 원시 파일을 새 원시 파일로 바꾸십시오.
예를 들어 data_set1_5classes에는 본 논문의 표 4에 있는 "기본 설정"에 대한 데이터가 포함되어 있습니다.
다운로드할 수 있습니다:
cd / $YOURPATH $/ForAINet/PointCloudSegmentation
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1 models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=treeins_set1 job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1 models=panoptic/FORpartseg_3heads_BiLoss model_name=PointGroup-PAPER training=treeins_set1_addBiLoss job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_classweight models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=treeins_set1_nw8_classweight job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_classweight models=panoptic/FORpartseg_3heads_heightweight model_name=PointGroup-PAPER training=treeins_set1_heightweight job_name= # YOUR_JOB_NAME#
# Command for training
# To be added
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_add_intensity models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=treeins_set1_intensity job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_add_return_num models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=treeins_set1_return_num job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_add_scan_angle_rank models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=treeins_set1_scan_angle_rank job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_add_all_20010 models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=treeins_set1_addallFea_20010 job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_curved_subsam models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=treeins_set1_addCurvedSubsample job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_treemix3d models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=treeins_set1_mixtree job_name= # YOUR_JOB_NAME#
# Command for training
python train.py task=panoptic data=panoptic/treeins_set1_treemix3d_pd#POINT_DENSITY# models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=mixtree_#POINT_DENSITY# job_name= # YOUR_JOB_NAME#
# take point density=10 as an example
python train.py task=panoptic data=panoptic/treeins_set1_treemix3d_pd10 models=panoptic/FORpartseg_3heads model_name=PointGroup-PAPER training=mixtree_10 job_name= # YOUR_JOB_NAME#
사전 훈련된 모델은 여기에서 다운로드할 수 있습니다: https://polybox.ethz.ch/index.php/s/aUypOXxOW3pYPe9
# Command for test
# remember to change the following 2 parameters in eval.yaml:
# 1. "checkpoint_dir" to your log files path
# 2. "data" is the paths for your test files
python eval.py
# Command for output the final evaluation file
# replace parameter "test_sem_path" by your path
python evaluation_stats_FOR.py
cd / $YOURPATH $/ForAINet/tree_metrics
# remember to adjust parameters based on your dataset
python measurement.py
# Please note that our code is based on the Superpoint Graphs repository, which can be found at https://github.com/loicland/superpoint_graph. We have included our custom partition_FORdata.py file.
cd / $YOURPATH $/ForAINet/superpoint_graph/partition
python partition_FORdata.py
우리의 작업이 유용하다고 생각되면 주저하지 말고 인용해 주세요.
@article{
xiang2024automated,
title={Automated forest inventory: analysis of high-density airborne LiDAR point clouds with 3D deep learning},
author={Binbin Xiang, Maciej Wielgosz, Theodora Kontogianni, Torben Peters, Stefano Puliti, Rasmus Astrup, Konrad Schindler},
journal={Remote Sensing of Environment},
volume={305},
pages={114078},
year={2024},
publisher={Elsevier}
}