llama gpt knowledgebot
1.0.0
이 프로젝트는 사전 훈련된 모델과 의미론적 유사성 검색을 활용하여 주어진 상황에 따라 유익한 응답을 제공하는 질문 답변 시스템을 구현합니다.
app = Flask ( __name__ ) # Creates a Flask application instance.
사용자 입력과 말뭉치 모두에 대한 텍스트 임베딩을 생성하기 위해 사전 훈련된 Sentence Transformer 모델을 사용합니다.
model = SentenceTransformer ( 'all-MiniLM-L6-v2' )
embeddings = model . encode ( corpus ) # Generates embeddings for each document in the corpus
d = len ( embeddings [ 0 ]) # Dimensionality of the embedding vectors.
nlist = 10 # Number of neighbors to consider during search.
newindex = faiss . IndexFlatL2 ( d ) # Creates a FAISS index optimized for efficient similarity search.
newindex . train ( embeddings ) # Trains the index on the generated embeddings.
newindex . add ( embeddings ) # Adds the corpus embeddings to the index.
gptj = gpt4all . GPT4All ( "llama-2-7b-chat.ggmlv3.q4_0.bin" ) # Loads the GPT-4 model for text generation.
xq = model . encode ([ user_input ]) # Generates an embedding for the user's input.
k = 1 # Specifies the number of nearest neighbors to retrieve.
D , I = newindex . search ( xq , k ) # Searches the FAISS index for the nearest neighbor (most similar document) to the user input.
most_similar_document = corpus [ I [ 0 ][ 0 ]] # Extracts the most relevant document from the corpus based on the search results.
context = " " . join ( most_similar_document ) # Concatenates the retrieved document content into a single string.
question = user_input # Stores the user's input as the question.
input_text = f"Context: { context } n n Question: { question } n n Answer:" # Prepares the input text for GPT-4, combining context and question with placeholders.
max_tokens = 100 # Sets a maximum token limit for GPT-4 input (adjustable).
answer = gptj . generate ( input_text ) # Generates the response text using the GPT-4 model with the prepared context and question.
def generate_response_threaded ( user_input ):
response_thread = threading . Thread ( target = generate_response , args = ( user_input ,))
response_thread . start ()
response_thread . join ()
if __name__ == "__main__" :
app . run ( debug = True ) # Starts the Flask application in debug mode, allowing for automatic code reloading during development.