광물 탐사 기계 학습
이 페이지에는 일반적으로 유용한 코드와 예제와 함께 광물 탐사 및 기계 학습을 위한 리소스가 나열되어 있습니다. ML과 데이터 과학은 거대한 분야입니다. 이는 실제로 나에게 유용하거나 흥미로운 리소스입니다. 현재 저장소 포크에 대한 링크는 사용할 항목을 변경하고 참조용 목록에 넣었기 때문입니다. 대부분의 작업이므로 데이터 분석, 변환 및 시각화를 위한 리소스도 제공됩니다.
제안 환영: 토론, 문제 또는 끌어오기 요청을 엽니다.
목차
- 전망
- 지질학
- 자연어 처리
- 원격탐사
- 데이터 품질
- 지역 사회
- 클라우드 제공업체
- 도메인
- 개요
- 웹 서비스
- 데이터 포털
- 도구
- 온톨로지
- 서적
- 데이터세트
- 서류
- 다른
- 일반 관심사
지도
프레임워크
- UNCOVER-ML 프레임워크
- 지리 웨이블릿
- ML-전처리
- GIS ML 워크플로
- EIS 툴킷 -> EIS Horizon EU 프로젝트의 광물 전망 매핑을 위한 Python 라이브러리
- PySpatialML -> 래스터 기계 학습을 자동으로 geotiff 등으로 예측하고 처리하는 라이브러리입니다.
- scikit 지도
- TorchGeo -> 원격 감지 스타일 모델을 위한 Pytorch 라이브러리
- terratorch -> 지리공간 기반 모델을 위한 유연한 미세 조정 프레임워크
- 토치공간
- 지리
- Geo Deep Learning -> RGB 기반의 간단한 딥러닝 프레임워크
- 보좌관: 극한 상황을 해결하기 위한 인공 지능
- ExPloRA -> ExPLoRA: 도메인 전환 시 비전 변환기를 적응시키기 위한 매개변수 효율적인 확장 사전 훈련
- (https://www.researchgate.net/profile/Miguel-Angel-Fernandez-Torres/publication/381917888_The_AIDE_Toolbox_Artificial_intelligence_for_d isentangling_extreme_events/links/66846648714e0b03153f38ae/The-AIDE-Toolbox-Artificial-intelligence-for-disentangling-extreme-events.pdf)
아르 자형
- CAST -> 시공간 모델을 위한 캐럿 애플리케이션
- geodl -> 컨벌루션 신경망 기반 딥러닝을 이용한 지리공간 데이터의 의미론적 분할
파이프라인
- geotargets -> 대상을 테라 및 별로 확장
전망
호주
- 산화철 구리-금 광물 전위 지도
- 지질 매핑을 위한 기계 학습 : 알고리즘 및 응용 -> 코드와 데이터가 포함된 박사 학위 논문
- Ni-Co 라테라이트의 전망 매핑
- Transform 2022 튜토리얼 -> 랜덤 포레스트 예시
- 주석-텅스텐
- 반암 구리 시공간 탐사
- minpot-toolkit -> Hoggard et al Lab의 예 퇴적 구리를 이용한 경계 분석
- MPM-WofE -> 미네랄 잠재력 매핑 - 증거의 가중치
탐험가 챌린지
- 익스플로러 챌린지 -> OZ Minerals는 데이터 사이언스 도입으로 경쟁을 벌입니다.
남호주
- Gawler_MPM -> 코발트, 크롬, 니켈
- Gawler Craton의 지구물리학적 데이터 클러스터링
- [Zenodo Data](지구물리학적 데이터와 비지도 머신러닝을 활용하여 광물화 관련 암석 구조 자동 탐지)
SA 살펴보기 - 남호주 에너지광업부 대회
- 우승자 -> SARIG 데이터 정보
- 칼데라 -> 칼데라 분석 분석
- 인서토데이터
- 버터워스 및 바넷 -> 버터워스 및 바넷 항목
- 데이터 기반 광물화 매핑
북아메리카
캐나다
- 전송 전망 학습
- 논문 -> 사전 지질 전이 학습을 통한 불균형 데이터를 이용한 반암형 광물 전망 매핑
남아메리카
- 구조자성 특성으로부터 광상을 분류하는 기계 학습
브라질
- Mapa Predivo -> 브라질 학생 프로젝트
- Course_Predictive_Mapping_USP -> 코스 프로젝트
- 광물 전망 매핑
- 3D 증거 가중치
- 지질학적 복잡성 SMOTE -> 프랙탈 분석 포함
- MPM 유레나 -> 유레나 광물 지역
중국
- 앙상블 학습을 통한 MPM -> Qingchengzi Pb-Zn-Ag-Au 다금속 지구 중국
- 광물 전망 예측 합성곱 신경망 -> 몇 가지 아키텍처가 포함된 CNN 예 [이 저자의 논문은 GoogleNet을 사용함]
- CSAE를 통한 광물 전망 예측
- CAE를 통한 광물 전망 예측
수단
노르웨이
- 공중 전자기학과 지질 공학 데이터를 결합한 민감한 빙하 해양 점토의 지역 규모 매핑에 대한 기계 학습 기반 접근 방식
지질학
- 브라질 예측 지질 지도 -> 브라질 지질 조사 작업
- 깊이에서 기반암까지(깊이에서 기반암 매핑을 위한 공간적으로 지원되는 기계 학습 접근 방식 평가)
- DL-RMD -> 딥 러닝 애플리케이션을 위한 지구물리학적으로 제한된 전자기 저항 모델 데이터베이스
- 지질 이미지 분류기
- 인공지능 시대의 지질 매핑 -> 인공지능 시대의 지질 매핑
- GeolNR -> 3차원 구조 지질 모델링 애플리케이션을 위한 지질 암시적 신경 표현
- mapeamento_litologico_preeditivo
- 기계 학습 열압력 측정법을 통한 전 지구 암석권 맨틀 압력-온도 조건 매핑
- 신경암 타이핑
- West Musgraves 지질학 불확실성 -> 엔트로피 분석을 통한 불확실성 지도 예측: 매우 유용함
- 비정상성 완화 변압기
- 기반암 대 퇴적물
- 자동 인코더_원격 감지
- 논문 -> 스택형 자동 인코더 및 클러스터링을 통한 지질 매핑을 위한 원격 감지 프레임워크
훈련 데이터
- Into the Noddyverse -> 기계 학습 및 역산 응용을 위한 3D 지질 모델의 대규모 데이터 저장소
암석학
- 딥 러닝 암석학
- 암석 원석 예측기
- SA 지질학 암석학 예측
- 자동화된 유정 로그 상관관계
- dawson-facies-2022 -> 지질 이미지를 위한 전이 학습
- 논문 - > 탄산암 분류를 위한 전이 학습에 대한 데이터 세트 크기 및 컨볼루션 신경망 아키텍처의 영향
- 암석 분류 -> 랜덤 포레스트를 이용한 화산상 분류
- 지질학적, 지구물리학적 데이터를 활용한 3D 모델링을 위한 멀티뷰 앙상블 머신러닝 접근 방식
- 세드넷
교련
- 이종 드릴링 - 충분히 멀리 가지 않는 드릴홀을 사용하여 모델링을 살펴보기 위한 Nicta/Data61 프로젝트 보고서
- Corel -> 얼굴을 식별하고 핵심 이미지에 대해 암석 입력을 수행하는 스마트 컴퓨터 비전 모델
고지대
- Sub3DNet1.0: 지역 규모의 3D 지하 구조 매핑을 위한 딥러닝 모델
층서학
- 예측자 -> 탄화수소용으로 설계된 층서적 예측
- Stratal-geometries -> 지하 우물 로그에서 층서학적 기하학 예측
구조적
- APGS -> 구조 지질학 패키지
- 플레이트 구동력 일관성 테스트를 사용하여 플레이트 재구성 모델 평가 -> Jupyter 노트북 및 데이터
- gplately
- [구조지질학 요리책](https://github.com/gcmatos/structural-geology-cookbook]
- GEOMAPLEARN 1.0 -> 기계 학습을 통해 지질 지도에서 지질 구조 감지
- 선형 학습 -> 잠재적 필드 딥러닝 및 클러스터링을 통한 결함 예측 및 매핑
- LitMod3D -> 암석권과 하부 상부 맨틀의 3D 통합 지구물리학-석유학 대화형 모델링
- 다른 사람
시뮬레이션
- GebPy -> 암석 및 광물에 대한 지질 데이터 생성
- OpenGeoSys -> 다공성 및 파쇄 매질에서 열-수력-기계-화학적(THMC) 과정을 시뮬레이션하기 위한 수치적 방법 개발
- Stratigraphics.jl -> 2D 지리통계 프로세스에서 3D 층위학 생성
지구역학
- 황무지 -> 유역 및 지형 역학
- CitcomS -> 지구 맨틀과 관련된 압축성 열화학 대류 문제를 해결하도록 설계된 유한 요소 코드입니다.
- LaMEM -> 맨틀-암권 상호작용과 같은 다양한 열-기계적 지구역학 과정을 시뮬레이션합니다.
- PTatin3D -> 지구역학과 관련된 장기간의 프로세스 연구 [원래 동기 : 암석권 변형의 고해상도, 3차원 모델을 연구할 수 있는 툴킷]
- 지하세계 -> 지구역학의 유한 요소 모델링
지구물리학
기초 모델
- 도메인 간 기반 모델 적응: 지구물리학 데이터 분석을 위한 선구적인 컴퓨터 비전 모델 -> 일부 코드 향후 제공
- 지진 기초 모델 -> "지구물리학의 차세대 딥러닝 모델"
호주
레골리스 깊이
- 레골리스 깊이 -> 모델
- 모델링된 충전재로 호주의 완전한 방사성 그리드
AEM 보간
- 지역 AEM 조사를 사용한 고해상도 전도도 매핑
전자기학
- TEM-NLnet: 잡음 학습을 통한 과도 전자기 신호에 대한 심층 잡음 제거 네트워크
반전
- 기계 학습 및 지구물리학적 역전 -> Y. Kim 및 N. Nakata의 논문 재구성(The Leading Edge, Volume 37, Issue 12, 2018년 12월)
오일러 디콘볼루션
- https://legacy.fatiando.org/gallery/gravmag/euler_moving_window.html
- 하모니카 버전은 결국? https://hackmd.io/@fatiando/development-calls-2024?utm_source=preview-mode&utm_medium=rec
- https://notebook.community/joferkington/tutorials/1404_Euler_deconvolution/euler-deconvolution-examples
- https://github.com/ffigura/Euler-deconvolution-plateau
중력
- [컨볼루션 신경망을 통한 중력 데이터를 이용한 3차원 지하 구호 복원]
- 딥러닝을 활용하여 구현된 중력 전위장의 안정적인 하향 지속
- 기계 학습 접근 방식을 통한 3차원 밀도 구조의 빠른 이미징
자기학
- Adapted-SRGAN을 통한 고해상도 항공자기 지도
- MagImage2Geo3D
지진
- StorSeismic -> 지진 데이터 기능을 저장하기 위해 신경망을 사전 훈련하는 접근 방식
- PINNtomo -> 물리 기반 신경망을 이용한 지진 단층 촬영
지진학
- obspy -> 지진학적 처리를 위한 프레임워크
석유물리학
건축
- 머신러닝을 활용하여 고대 섭입대에서 섭입 석판 분리 확인 -> 노트북
- Colab 노트북 -> ML-SEISMIC 간행물 벤치마크 결과에 대한 Google Colab 입력 파일
- 지구역학에서 머신러닝의 힘 활용
- 속도 및 상태 마찰 법칙을 사용한 오류 슬립 시뮬레이션을 위한 물리 정보 신경망
- 느린 미끄러짐 현상에 대한 시뮬레이션 및 마찰 매개변수 추정
- 논문 -> 느린 미끄러짐 영역에서 마찰 매개변수의 공간 분포를 추정하기 위한 물리학 기반 딥러닝
지구화학
- CODAinPractice -> 구성 데이터 분석 실습
- 지오코다
- DAN-GRF -> 공간 인식 지구화학적 이상 탐지를 위해 지리적 랜덤 포레스트에 연결된 심층 오토인코더 네트워크
- 대시 지구화학적 전망 -> K-평균으로 하천 퇴적물을 분류하는 웹앱
- 클리노피록센 함유 마그마에 대한 기계 학습 열압력 측정 향상
- 종이 -> Clinopyroxene-Bearing-Magmas에 대한 ML-온도 측정법 강화
- 지르콘 생식력 모델 -> 반암 구리 침전물로부터 생식력 있는 지르콘을 예측하기 위한 결정 트리
- 반암 퇴적물 유형 및 자원 크기를 예측하는 기계 학습 지르콘 미량 원소 도구
- geology_class0 -> 지르콘 미량 원소로 화성암과 광상을 구별하는 기계 학습 접근 방식
- 종이
- 데모 애플리케이션
- https://colab.research.google.com/drive/1-bOZgG6Nxt2Rp1ueO1SYmzIqCRiyyYcT
- 지오켐프린트
- 지구화학
- ICBMS Jacobina -> 금 매장지에서 황철광 화학 분석
- Bor 및 Cukaru Peki의 지르콘 미량 원소 화학 해석: 기존 접근 방식 및 무작위 포레스트 분류
- Indicator_minerals -> PCA가 전기석의 기원에 대해 이야기할 수 있습니까?
- 지구화학적 탐사 저널 - 매니폴드
- LewisML -> 루이스 지층 분석
- MICA -> 화학 성분, Shiny
- 희토류 원소의 지구화학적 이상 탐지를 위한 다변량 통계 분석 및 맞춤형 편차 네트워크 모델링
- 지구화학적 데이터 분석을 통한 희토류 원소 유망성 매핑 -> 지구화학적 데이터 분석을 통한 희토류 원소 유망성 매핑
- QMineral Modeller -> 브라질 지질 조사의 광물 화학 가상 조수
- 시생대 섭입 발생의 세속적 변화 -> 제노도 코드 아카이브
- [논문] https://www.researchgate.net/publication/380289934_Secular_Changes_in_the_Occurrence_of_Subduction_During_the_Archean 지르콘 미량원소에 의한 화성암 및 광상 퇴적물 식별을 위한 기계학습 접근법
크리깅
- DKNN: 해석 가능한 지리공간 보간을 위한 심층 크리깅 신경망
자연어 처리
- 텍스트 추출 -> 문서에서 텍스트 추출 : 유료 ML을 서비스로 제공하지만 매우 잘 작동하며 효율적으로 테이블을 추출할 수 있습니다.
- NASA 컨셉 태깅 -> 키워드 예측
- 암각학 보고서 데이터 추출기
- SA 탐색 주제 모델링 -> 탐색 보고서에서 주제 모델링
- 지층
- 지오코퍼스
- 포르투갈어 BERT
- 버트 CWS
- 광산 회사 드릴홀 결과 자동 추출
단어 임베딩
- 지구과학 언어 모델 -> 캐나다의 지구과학 문서에 대해 재교육된 코드 파이프라인 및 모델[Glove, BERT) 처리
- 데이터 세트 -> 모델을 지원하는 데이터
- 논문 -> 지구과학 언어 모델 및 그 내재적 평가
- 논문 -> 자연어 처리를 지구과학 텍스트 데이터 및 전망 모델링에 적용
- GeoVec -> 300,000개의 지구과학 논문에 대해 훈련된 단어 임베딩 모델
- GeoVec 모델 -> GeoVec 모델용 OSF 스토리지
- 종이
- GeoVecto Litho -> 단어 임베딩에서 3D 모델 보간
- GeoVEC Playground -> Padarian GeoVec 장갑 단어 임베딩 모델 작업
- GloVe -> 단어 임베딩 생성을 위한 Standford 라이브러리
- gloVE python 글러브, 글러브-파이썬은 Windows에서 매우 문제가 많습니다. 여기에서는 Windows용 바이너리 버전이 설치됩니다.
- 장갑 -> 메모리 내 벡터화 장갑 구현
- PetroVec -> 석유 및 가스 산업을 위한 포르투갈어 단어 임베딩: 개발 및 평가
- wordembeddingsOG -> 포르투갈어 석유 및 가스 단어 임베딩
- 포르투갈어 단어 임베딩
- 스페인어 단어 임베딩
- 다국어 정렬
명명된 엔터티 인식
- Geo NER 모델 -> 명명된 엔터티 인식
- GeoBERT - 모델의 포옹 얼굴 저장소
- [논문]https://www.researchgate.net/publication/359186219_Few-shot_learning_for_name_entity_recognition_in_geological_text_based_on_GeoBERT
- INDUS -> NASA 과학 맞춤형 LLM 제품군
- Amazon Comprehend를 사용하여 NLP를 마스터하지 않고도 텍스트에서 주요 지구과학 용어를 찾는 방법
- OzRock - OzRock: 지질(광물 탐사) 영역에서 개체 인식을 위한 레이블이 지정된 데이터세트
존재론
- GAKG -> 다중 모드 지구과학 학술 지식 그래프(중국어)
- GeoERE-Net -> 딥러닝 접근법을 활용한 지식 그래프 기반 지질 보고 이해
- GeoFault 온톨로지
- geosim -> 의미론적으로 유발된 지질학적 과정의 질적 시뮬레이션
- [https://www.duo.uio.no/handle/10852/111467](Knowledge Modeling for Digital Geology) -> 논문 2편으로 박사학위 논문
- SIRIUS GeoAnnotator -> 위의 웹사이트 예
- 온톨로지 CWS
- Stratigraphic 지식 그래프(StraKG)
대규모 언어 모델
- 지구과학을 위한 대규모 언어 모델
- 지구과학 지식 이해 및 활용을 위한 학습 기초 언어 모델 논문
- GeoGalaxica -> 지구과학의 더 큰 기초 언어 모델
- GeoChat -> 원격 감지를 위한 기반 대형 비전 언어 모델
- LAGDAL -> LLM 지질학 지도 정보를 위치 실험과 일치시키는 실험
챗봇
- GeoGPT -> 중국 프로젝트의 Deep Time Digital Earth Research Group
원격탐사
- CNN Sentinel -> 공개 데이터 세트를 기반으로 한 CNN을 사용한 위성 데이터의 토지 이용 분류 개요
- DEA 노트북 -> 확장 가능한 기계 학습 예시이지만 여기에는 유용한 내용이 많이 있습니다.
- EASI 요리책 노트북 -> ODC 스타일 분석을 위한 CSIRO Earth Analytics 플랫폼 소개
- DS_UNet -> Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 Multispectral Imager를 융합하는 Unet
- MP-MAE(다중 프리텍스트 마스크 자동 인코더)
- 데이터
- Segment-geospatial -> 지리공간 용도로 무엇이든 분할합니다.
- SamGIS -> GIS에 적용된 모든 것을 세그먼트화합니다.
- SatMAE++ -> 다중 스펙트럼 위성 영상을 위한 변환기 사전 훈련 재검토
- Grid-mae -> Vision Transformer Masked Autoencoder에서 다중 스케일 그리드를 사용하여 조사합니다.
- 스케일메이
- CIMAE -> CIMAE - 채널 독립적 마스크 오토인코더
- 포크 -> 참조를 위해 이름을 지정합니다.
- [원격 탐사를 위한 자기지도 표현 학습] -> 석사 논문에는 위의 내용과 여러 모델의 비교가 포함되어 있습니다.
- 유반
- 접지망
- GeoTorchAI -> GeoTorchAI: 시공간 딥러닝 프레임워크
- [pytorcheo](https://github.com/earthpulse/pytorchEO -> 지구 관측 응용 및 연구를 위한 딥러닝
- AiTLAS -> 지구 관측의 이미지 분류를 위한 최첨단 딥 러닝 접근 방식을 평가하기 위한 오픈 소스 벤치마크 제품군
- 분할 체육관(Segmentation Gym) -> 체육관은 "ND"(다중 스펙트럼 이미지에서 일치하는 밴드의 수)에 대한 이미지 분할을 위한 "원스톱 상점"으로 설계되었습니다.
- deep_learning_alteration_zones
- 멋진 채굴 밴드 비율 수집 -> 다양한 광물을 강조하기 위해 사용되는 간단한 밴드 비율 수집
- 멋진 원격 감지 기반 모델
- Clay -> 지구를 위한 오픈 소스 AI 모델 및 인터페이스
- IBM-NASA-GEOSPATIAL Prithvi
- 기초 모델 미세 조정에 따른 이미지 분할 -> Prithvi용
- AM-RADIO: 응집적 비전 기반 모델
- RemoteCLIP -> 원격 탐사를 위한 비전 언어 기반 모델
- 스펙트럼GPT
- zenodo) -> 스펙트럼 데이터에 맞춤화된 원격탐사 기반 모델
처리
- ASTER 변환 -> ASTER hd5에서 geotiff NASA github로 변환
- HLS 데이터 리소스 -> 조화로운 Landsat Sentinel wrangling
- sarsen -> xarray 기반 SAR 이미지 처리 및 수정
- openEO -> openEO는 R, Python, JavaScript 및 기타 클라이언트를 EO 클라우드 백엔드에 연결하는 개방형 API를 개발합니다.
스펙트럼 혼합 해제
- 하이퍼스펙트럼 이미지 분류를 위한 기존-변환기-설문조사-2024
- 초분광 딥 러닝 검토
- 하이퍼스펙트럼 오토인코더
- 딥런 HSI
- 3DCAE-초분광분류
- DeHIC
- Rev-Net
- 논문 -> 스펙트럼 가변성을 갖춘 초분광 분리를 위한 가역적 생성 네트워크
- Pysptools -> 유용한 경험적 알고리즘도 있습니다.
- 스펙트럼 파이썬
- 스펙트럼 데이터 세트 RockSL -> 스펙트럼 데이터 세트 열기
- 언믹싱
초분광
- CasFormer: 융합 인식 컴퓨팅 초분광 이미징을 위한 계단식 변환기
- Keras의 스펙트럼 정규화
- S^2HM^2 -> S2HM2: 자기 지도 기능 학습 및 대규모 초분광 이미지 분류를 위한 스펙트럼-공간 계층적 마스크 모델링 프레임워크
심상
- 시각화에서 심층 컬러맵 추출
- 지형도에서 역사적인 노천 채굴 교란을 추출하기 위한 의미론적 분할 -> 예는 탄광에 대한 것입니다.
- 국제 크로노스트라티그래픽 색상 코드 -> 스프레드시트 및 기타 형식의 RGB 코드 및 기타
- LithClass -> 암석학 색상 코드의 USGS 버전
- 컬러 버전
- SeisWiz -> 경량 Python SEG-Y 뷰어
조직
- 심층 합성곱 신경망을 사용한 광물 질감 분류: 반암 구리 광상에서 나온 지르콘에 대한 응용
시뮬레이션
- Intelligent Prospector -> 순차적 데이터 수집 계획
- 제노도
기하학
- Deep Angle -> 딥러닝을 활용하여 단층촬영 이미지의 접촉각을 빠르게 계산
다른
- 광물학적 시스템의 네트워크 분석
- 지리 분석 및 기계 학습
- 기계 학습 지하
- ML 지구과학
- 지구과학 탐정이 되어보세요
- Earth ML -> PyData 접근 방식의 일부 기본 튜토리얼
- GeoMLA -> 공간 및 시공간 데이터를 위한 기계 학습 알고리즘
플랫폼
가이드
- 지리공간 CLI - 지리공간 명령줄 도구 목록
- 위성 이미지 딥러닝
- 지구 관측
- 지구인공지능
- 오픈 소스 GIS -> 생태계 종합 개요
데이터 품질
- 기계 학습을 위한 지구과학 데이터 품질 -> 기계 학습을 위한 지구과학 데이터 품질
- 호주 중력 데이터 -> 중력 관측소 데이터 개요 및 분석
- Geodiff -> 벡터 데이터 비교
- Redflag -> 문제 감지를 위한 데이터 및 개요 분석
기계 학습
- Dask-ml -> 일부 일반적인 ML 알고리즘의 분산 버전
- geospatial-rf -> 공간적 맥락에서 랜덤 포레스트 애플리케이션을 지원하는 함수 및 래퍼
- Geospatial-ml -> 여러 공통 패키지를 한 번에 설치
잠재 공간
- 중첩된 융합
- 논문 -> 중첩 융합: M2020 PIXL RGBU 및 XRF 데이터에 대한 다중 규모 중첩 데이터의 차원 축소 및 잠재 구조 분석
측정항목
- 점수 -> xarray를 사용하여 모델 및 예측 검증 및 평가
확률적
- NG 부스트 -> 확률적 회귀
- 확률적 ML
- BO를 사용하여 PU 배깅 -> 베이지안 최적화를 사용하여 라벨이 지정되지 않은 양성 배깅
클러스터링
자체 구성 지도
- GisSOM -> 핀란드 지질조사국의 지리공간 중심 자체 조직 지도
- SimpSOM -> 자체 구성 맵
다른
베이지안
설명 가능성
- InterpretML -> 표 형식 데이터 모델 해석
- InterpretML -> 커뮤니티 추가
딥러닝
- Deep Colormap Extraction -> 사진에서 데이터 스케일 추출 시도
- 지구과학 문서에서 이미지 추출 및 분류
데이터
- Xbatcher -> 딥러닝을 위한 Xarray 기반 데이터 읽기
- Zarr 및 Xarray를 사용하는 머신 러닝용 클라우드 네이티브 데이터 로더
- zen3geo -> pytorch를 사용한 Xbatcher 스타일 데이터 과학
설명 가능성
- 모양 값
- Weight Watcher -> 네트워크가 얼마나 잘 훈련되었는지 분석
- Weightwatcher.ai
- Weightwatcher-ai.com -> 전문 웹 버전
자기 지도 학습
- 자체 감독 -> 여러 알고리즘의 Pytorch 라이트닝 구현
- 심클러
- 멋진 자기주도 학습 -> 선별된 목록
초매개변수
코딩 환경
지역 사회
- Software Underground - 지하와 코드의 교차점을 탐색하는 데 관심이 있는 사람들의 커뮤니티
- 채팅 가입 - SWUNG 커뮤니티 채팅 가입
- Mattermost - 커뮤니티 채팅 서비스
- 이전 Slack 채널(더 이상 사용되지 않음, 위의 가장 중요한 내용 참조)
- 지구과학 오픈 소스 연계
- 비디오
- 멋진 개방형 지구과학[석유 및 가스 편향 참고]
- Transform 2021 해킹 사례
- Segysak 2021 튜토리얼
- T21 지진 노트북
- Python을 사용한 실용적인 지진
- 2021 심펙 변환
- 판게오
- 디지털 지구 호주
- 오픈 소스 지리공간 재단
- OSGeoLive -> 다양한 오픈 소스 지리공간 소프트웨어가 포함된 부팅 가능한 DVD/USB
- ASEG -> 호주 탐험 지구과학자 협회의 비디오
- 지질 모델링 및 매핑을 위한 AI -> 컨퍼런스 당일 영상
- 회의
클라우드 제공업체
AWS
- ec2 Spot Labs -> 스팟 인스턴스 자동 작업을 더 쉽게 만들기
- Sagemaker 지리공간 ML
- Sagemaker -> ML 관리형 서비스
- SDK
- 진입점 유틸리티
- 워크샵 101
- 교육 툴킷
일괄
- Shepard -> AWS Batch Pipelines의 자동 클라우드 형성 설정: 훌륭합니다.
패키지
- Mlmax - 빠른 라이브러리 시작
- 작은 물질
- 퓨틸
일반적인
- 딥 러닝 컨테이너
- Loguru -> 로깅 라이브러리
- AWS GDAL 로봇 -> 지오티프의 람다 및 일괄 처리
- 서버리스 지진 처리
- LIthops -> 멀티 클라우드 분산 컴퓨팅 프레임워크
개요
도메인
웹 서비스
나열되어 있으면 일반적으로 데이터라고 가정하고, WMS와 같은 그림만 있으면 그렇게 말할 것입니다.
세계
호주
- AusGIN
- 지구과학 호주
- 미네랄 잠재력 -> WMS
- 지구과학 호주 카탈로그 서비스
지질학
- AUSLAMP - > 테넌트 크릭 - MtIsa
- 현장 지질학
- 깊은 암석권 -> 깊은 암석권 광물 잠재력
- 지구연대기 -> 지구연대기
- 지질 지역
- WMS -> WMS 그림
- EGGS -> 지질 및 지구물리학적 표면 추정
- 원생대 알칼리성 암석 - 원생대 알칼리성 암석 데이터 세트 WFS {WMS도 있음}
- 신생대
- 중생대
- 고생대
- 고고학
- 층서학 -> 층서학 단위
지구물리학
- 지구물리학 조사
- 지진 조사 -> 육상 지진 조사
- 자기지성 -> 호주 북부 AUSLAMP 역
다른
- Ni-Cu-PEGE -> 침입 호스팅 니켈 구리 PGE 예금
- EFTF 분야 -> 미래분야 탐색
- 온도 -> 해석된 온도
- DEA -> 디지털 지구 호주
- 토지 피복
- 수역
- BOM -> 기상청 수리지화학
뉴 사우스 웨일즈
- NSW
- WCS
- WFS 광물 드릴홀
- WFS 석유 시추공
- WFS 석탄 드릴홀
- 지진 -> 지진 및 기타
퀸즈랜드
- 퀸즈랜드
- 지구과학 -> 지구물리학 및 보고서 색인
- 지질학
- 지역
- 상태
- 공동주택
- 도로
- 물줄기
남호주
- 사리그
- 드릴홀
- 지질학
- 지구물리학
- 전망
- 광물과 광산
- 원격탐사
- 지진
- 공동주택
노던 테리토리
태즈메이니아
- 태즈메이니아 WFS
- 태즈메이니아 REST
- 시추공
빅토리아
서호주
뉴질랜드
남아메리카
브라질
페루
멕시코
아르헨티나
콜롬비아
우루과이
다른
유럽
EGDI -> EGDI 미네랄
스웨덴
- SGU 자기학 WMS
- SGU 우라늄
- 지구물리학 메타데이터
핀란드
- GTK -> 핀란드 지질조사국
- 북극 광물 -> 북극 1M 광물 발생
덴마크
포르투갈
- 포르투갈 지질학
- 광물 발생 -> WMS
- 도시와 마을
스페인
- 스페인
- 지질학 -> 200K
- 100만 -> 100만
- 5만 -> 5만
- IGME 정동석
- 지구물리학
- 구리 - 구리
- GeoFPI - > 지질학 및 광물 남부 포르투갈어 지역
- 물
우크라이나
아일랜드
영국
- BGS -> 영국 지질 조사국
- Geoindex -> 광물 발생 예시
- 휴식 -> BGS 휴식 서비스 및 Inspire 625
독일
체코
슬로바키아
헝가리
루마니아
- IGR -> WMS 전용
- IGR 분 -> WMS만
폴란드
북아메리카
캐나다
미국
- USGS 월드 미네랄
- USGS MRDS
- 미네소타
아시아
- 중국 -> WMS 광물 매장량 wap
- 광석밭 -> 광물 발생 지점
- 인도 광물 -> WMS
- 인도 지구물리학
아프리카
- 아프리카지리포털 -> 휴식서비스
- 아프리카 10M -> 아프리카 10M 광물 발생 https://pubs.usgs.gov/of/2005/1294/e/OF05-1294-E.pdf
- IPIS Artisanal Mines - > WMS 버전도 있습니다.
- 깃허브
- 우간다 -> GMIS WMS
일반적인
- 광물 탐사 웹 서비스 -> 많은 관련 웹 서비스에 접근할 수 있는 QGIS 플러그인
다른
아피스
- 개방형 데이터 API -> GSQ 개방형 데이터 포털 API
- CORE -> 연구 텍스트 공개
- 공유 -> 개방형 과학 API
- USGS 간행물
- 크로스레프
- xDD -> 이전 GeoDeepDive
- ADEPT -> 1,500만 개의 수집된 논문을 검색하기 위한 GUI에서 xDD로
- 오픈알렉스
- API
- diophila Python 라이브러리
- 파이썬 라이브러리
- 마크로스트랫
- OpenMinData -> Mindat API에서 광물 및 지질 물질에 대한 데이터 쿼리 및 검색을 용이하게 합니다.
데이터 포털
세계
- 지구 모델 협업 -> 다양한 지구 모델에 대한 액세스, 모델 미리보기를 위한 시각화 도구, 모델 데이터/메타데이터 추출 기능 및 기여된 처리 소프트웨어 및 스크립트에 대한 액세스.
- ISC 게시판 -> 지진 초점 메커니즘 검색
- [자기정보컨소시엄[(https://www2.earthref.org/MagIC/search) -> 고지자기, 지자기, 암석자기
호주
지구과학 호주
- 호주 지구과학 데이터 카탈로그
- AusAEM
- 호주 지구과학 포털
- 미래 포털 탐색 -> 다운로드 정보가 있는 Geoscience Australia 웹 포털
- AusAEM
- AusLAMP
- 지질연대학과 동위원소
- 수문지질학 유역 -> 유역 레이어 검색
- 중요 광물 매핑 이니셔티브
- 호주 층서 단위
- 호주 시추공 층위학 단위 -> 퇴적 단위의 지하수 편집
- 지구과학 호주 지구물리학 스레드 -> OpendDAP 및 https 액세스
- MORPH gdb -> Musgrave 경관 시추 데이터
CSIRO
- CSIRO 데이터 액세스 포털
- 레골리스 깊이
- TWI -> 지형습도지수
- ASTER 지구과학 지도 -> 웹사이트
- FTP -> CSIRO FTP 사이트
- ASTER 지도 메모 -> 위에 대한 메모
AuScope
세 개 한 벌
- 토양 및 암석학적 모델링을 위한 강화된 맨땅 공변량
기상청
기초 공간 데이터
남호주
- SARIG -> 남호주 지질조사국 지리공간 지도 기반 검색
- SARIG 카탈로그 -> 데이터 카탈로그
- 3D 모델
- 데이터 패키지 - 연간 업데이트
- s3 보고서 -> 웹 인터페이스가 있는 s3 버킷의 보고서 및 텍스트 버전)
- 보고서
- 지진
노던 테리토리
- STRIKE -> 노던 테리토리 지질 조사
- 게미스
- 맥아더 분지 -> 3D 모델
- 지구물리학적 조사
- 지구물리학 -> 참고
- 시추 및 지구화학 -> 참조
퀸즈랜드
- 퀸즈랜드 지질 조사
- 지구물리학적 조사
- 시추 및 지구화학
서호주
- GEOVIEW -> 서호주 지질조사국
- DMIRS -> DMIRS 데이터 및 소프트웨어 센터
- URL 다운로드 -> 다운로드 링크 데이터 세트
- 시추 및 지구화학
- 패키지 다운로드 - 개선?
- 지구화학
- 깊이가 있는 석유정
- 데이터 WA 하위 집합
NSW
- MINVIEW -> 뉴사우스웨일즈 지질조사국
- DiGS -> 출판물 및 지질공학 컬렉션
태즈메이니아
빅토리아
- 지구 자원
- GeoVIC -> 웹맵을 더 유용하게 사용하려면 등록이 필요합니다.
뉴질랜드
- 탐사 데이터베이스 -> 온라인
- GERM -> 뉴질랜드 지질자원 지도
- 지질학 -> 웹 지도
- https://maps.gns.cri.nz/gns/wfs
남아메리카
브라질
- CPRM -> 브라질 지질조사국
- 다운로드 -> 브라질 지질 조사 다운로드
- Rigeo -> 지구과학 기관 저장소
페루
- Ingemmet GeoPROMINE -> 페루 지질조사국
- GeoMAPE
멕시코
아르헨티나
콜롬비아
우루과이
칠레
유럽
- EGDI -> 유럽 지구과학
- WFS
- 프로민
- 영감 -> 영감 Geoportal
덴마크
핀란드
- 미네랄4EU
- GTK -> 핀란드 지질조사국
- 지구화학 지도 -> PDF로만 가능!
스웨덴
스페인
포르투갈
아일랜드
- GSI -> 아일랜드 지질조사국
- GSI - 지도 뷰어
- 금광 -> 지도 및 문서 검색
- data.gov.ie -> 국가 포털 보기
- isde -> 아일랜드 공간 데이터 교환
노르웨이
- NGU -> 노르웨이 지질조사국
- 데이터베이스 -> 광물자원 및 층위학 조회
- 깃허브
- API
- Geoporta -> 지구물리학
- GEONORGE -> 다운로드가 포함된 데이터 카탈로그
영국
우크라이나
러시아 제국
- 러시아 지질연구소 -> 현재 접근 불가
- RGU -> 예금의 GIS 프로젝트
독일
- 지리포탈
- 지리지도 -> M
- Atom -> Atom 데이터 피드
- GDI -> 3D 모델 독일
프랑스
크로아티아
체코
슬로베니아
슬로바키아
헝가리
루마니아
폴란드
영국
- 영국 육상 지구물리학 도서관
- OS 데이터 허브 영국 지질학
- 지질학 625
북아메리카
캐나다
- 캐나다 천연자원
- 깃허브
- 지구과학 데이터 저장소 -> DAP 서버
- 마이닝 웹 맵 포털
- DEM -> COG 형식의 캐나다 DEM
- CDEM -> 디지털 고도 모델(2011)
- 온타리오
- 퀘벡
- 시검 데이터베이스
- 브리티시컬럼비아
- 광물 발생 데이터베이스
- 유콘
- 노바스코샤
- 지방 분구 관장
- 프린스 에드워드 아일랜드
- 서스캐처원
- 광물 발생 데이터베이스
- 뉴펀들랜드 -> Chrome에서는 작동하지 않았으며 Edge에서 시도해 보았습니다.
- 앨버타
- 대화형 매핑 애플리케이션
- 노스웨스트 준주
- 광물 사용권
미국
- USGS -> 지도 데이터베이스
- MRDS -> 광물자원 데이터 시스템
- Earth Explorer -> USGS 원격 감지 데이터 포털
- 전국 지도 데이터베이스
- 전국 지도 데이터베이스
- 알래스카
- ReSci -> 국가 지질 및 지구물리학 데이터 보존 프로그램의 과학 컬렉션 등록
- 미시간
아프리카
- 지적
- 수리지질학 -> 지하수 지도책의 수리지질학 및 지질학
- 서아프리카 -> 광물 매장지
- 나미비아
- 광물 발생
- 광부
- 남아프리카 -> 남아프리카 지질 조사
- 광물 발생 -> 다운로드를 위해 로그인이 필요한 예
- 우간다 -> GMIS 포털
- 금속 광물
- 탄자니아
- 광물 발생
- 광산
- SIGM -> 튀니지 지질학 및 광업
- 잠비아 -> 잠비아 연립 주택이 여기에 있습니다.
아시아
중국
- 지구과학 데이터
- 광물 발생
- 국립 광물 매장지 데이터베이스
인도
- 부코시 -> 인도 지질조사국
- 참고 라자스탄 지질학은 고통스러운 단편적인 것 외에는 작동하지 않습니다. 원한다면 알려주세요.
사우디아라비아
다른
지질학
- StratDB
- GEM 글로벌 활성 결함
- RRuff 광물 속성
- 기사 -> 광물학의 진화 시스템
- 원지질학
- 목록
이란
지질학
일반적인
- OSF -> 오픈 사이언스 재단
- 퇴적물 호스팅 비금속 -> 퇴적물 호스팅 비금속
- 암석권 Athenosphere 경계 -> LAB Hoggard/Czarnota
- 지질조사 목록
보고서
호주
- 노던 테리토리 GEMIS
- 남호주 SARIG
- 서호주 WAMEX
- 퀸즈랜드
- NSW 디그스
- PorterGEO -> 요약 개요가 포함된 세계 광물 매장지 데이터베이스
- 지속 가능한 광물 연구소(Sustainable Minerals Institute) -> 데이터세트와 지식을 생산하는 대학 소속 연구원들로 구성된 퀸즈랜드 조직
캐나다
- 브리티시컬럼비아
- 검색 -> 광물 평가 보고서
- 출판물 -> 출판물
- 온타리오 -> 광물 평가 보고서
- 앨버타
- 유콘
- 발자국
- 매니토바
- 출판물
- 뉴펀들랜드와 래브라도
- 노스웨스트 준주
- 노바스코샤
- 퀘벡
- 서스캐처원
- 찾다
- iMaQs -> 통합 채광 및 채석 시스템
미국
- 애리조나
- 몬타나
- 네바다
- 뉴멕시코
- 미네소타
- 미시간
- JSON
- 알래스카
- 워싱턴
다른
- 영국 지질 조사국 NERC
- 미네랄 잠재력
- 찾다
- API 예시
- 출판물
- MEIGA -> MEIGA 600 BGS 광물 탐사 프로젝트 보고서
- GeoLagret -> 스웨덴
- MinData -> 전 세계 암석 위치 편집
- 광물 데이터베이스 -> 과학적 특성과 연대를 포함한 내보내기 가능한 광물 목록
- NASA
- ResearchGate -> 연구원 및 전문 네트워크
도구
GIS
- QGIS -> GIS 데이터 시각화 및 분석 오픈 소스 데스크탑 애플리케이션에는 몇 가지 ML 도구가 있습니다. 빠르고 쉬운 보기에 필수적입니다.
- QGIS의 2D 지질학 -> QGIS NA 2020을위한 워크숍 학생 및 애호가를위한 지질지도 및 단면 소개
- OpenLog-> 드릴 홀 플러그인 베타
- Geo -Sam-> QGIS 플러그인 세그먼트 래스터가있는 모든 것을위한 플러그인
- 증거의 무게
- 플러그인
- 잔디
- Saga-> Sourceforge의 거울
3D
지리 공간 장군
- 지구 과학을위한 파이썬 리소스
- geoutils-> 지리 공간 분석 및 다른 Python GIS 패키지 간의 상호 운용성 촉진.
벡터 데이터
파이썬
- 지오 팬더
- Dask-Geopandas
- Geofileops-> 데이터베이스 기능 및 GeoPackage를 통해 증가 된 속도 공간 조인
- Kart-> Daata의 분산 버전 제어
- Pyesridump-> Library, Esri REST 서버에서 규모로 데이터를 가져 오는 라이브러리
아르 자형
- SF
- Terra -> Terra는 "Raster"및 "Vector"형태로 지리적 (공간) 데이터를 조작하는 방법을 제공합니다.
래스터 데이터
기음
- accesstract-> 명령 줄 구역 통계 c
줄리아
- Rasters.jl-> 일반적인 래스터 데이터 유형을 읽고 쓰기
파이썬
- Rasterio-> 래스터 데이터 처리를위한 Python Base Library
- Georeader-> 다른 위성 임무의 프로세스 래스터 데이터
- RasterStats-> 벡터 형상 기반 지리 공간 래스터 데이터 세트 요약
- Xarray-> 다차원 레이블이 붙은 배열 처리 및 분석
- rioxarray-> 래스터 데이터의 Xarray 처리를위한 멋진 높은 수준 API
- GeoCube-> 벡터 데이터 API의 Rasterisation
- ODC -GEO-> 원격 감지 기반 래스터 핸들링을위한 도구 Colorisation, Grid Workflows와 같은 많은 매우 편리한 도구
- COG Validator-> 클라우드 최적화 지오티프의 형식 확인
- Lithops / Coiled / Modal을 통한 Serverless-Datacube-Demo-> Xarray
- Xarray Spatial-> 자연 휴식과 같은 분류와 같은 래스터 데이터의 통계 분석
- XDGGS-> 기타 유형의 그리드
- XGCM-> 라벨이있는 히스토그램
- xrft-> xarray 기반 푸리에 변환
- XVEC-> Xarray 용 벡터 데이터 큐브
- Xarray -Einstats-> 통계, 선형 대수 및 Xarray의 Einops
아르 자형
- 래스터 -> r 라이브러리
- Terra->는 "래스터"및 "벡터"형태로 지리적 (공간) 데이터를 조작하는 방법을 제공합니다.
- 별 -> 시공간 배열 : 래스터 및 벡터 데이터 큐브
- r
벤치마크
- Raster -Benchmark-> Python 및 R의 일부 래스터 리바리 벤치마킹 벤치마킹
구이
- 화이트 박스 도구 -> 파이썬 API, GUI 등
데이터 수집
- Piautostage-> '고해상도 현미경 이미지의 자동 모음을위한 오픈 소스 3D 인쇄 도구;' 미네랄 샘플 용으로 설계되었습니다.
데이터 변환
- AEM에서 SEG-Y
- ASEG GDF2
- CGG Outfile Reader
- Geosoft Grid to Raster
- 루프 Geosoft 그리드
- Harmonica Geosoft Grid-> Xarray로의 전환시 진행중인 풀 요청
- Auscope-> 이진 GoCAD 모델의 데이터
- GOCAD SG 그리드 리더
- Geomodel-2-3dweb-> 여기에는 이진 Gocad SG Grids에서 데이터를 추출하는 방법이 있습니다.
- 도약 메쉬 리더
- OMF-> 사물 사이의 전환을위한 오픈 마이닝 형식
- PDF 광부
- vtk to dxf
지구 화학
- PygeochemTools-> Library 및 Command Line은 빠른 QC 및 지구 화학 데이터 플로팅을 가능하게합니다.
- SA 지구 화학적 맵 -> SA의 지질 조사에서 남호주 지구 화학 데이터의 데이터 분석 및 플로팅
- 지구 화학적 여유
- Scott Halley의 Geochemistry 튜토리얼
- 주기적 테이블
geostatistics
지구학
- 지질 시간 규모 -> 생산 코드이지만 시대의 정기적 인 CSV도 있습니다.
지질학
gempy-> 암시 적 모델링
gemgis-> 지리 공간 데이터 분석 지원
루프 구조 -> 암시성 모델링
수동 Python geologia-> 지질학 데이터 분석
Map2Loop-> 3D 모델링 자동화
pybedforms
SA Stratigraphy-> Stratigraphy 데이터베이스 편집기 WebApp
Striplog
analise_de_dados_estruturais_altamira
Global Tectonics-> 오픈 소스 데이터 세트를 구축, 판, 여백 등.
제노도 추가
litholog
피그플레이트
튜토리얼 데이터
지구 물리학
- 지구 과학 호주 유틸리티
- 지구 과학자 연습을위한 지구 물리학
- 잠재적 인 필드 도구 상자 -> 일부 Xarray 기반의 빠른 푸리에 변환 필터 - 파생 상품, 유사성, RPG 등
- 노트북 -> 몇 가지 예제가있는 클래스 [수직 파생물, 유사성, 상향 연속 등)
- 계산 지구 물리학 샌드 박스
- 지하실 퇴적물 -> 남극 대륙의 자기 지하실 깊이
- 신호 이미지 처리
전자기
- 지구 과학 호주 AEM
- uh electromagnetics->이 도메인 이해에 대한 코스워크 노트
- AEM 해석
- Emag py-> fdem
- Resipy-> DC / IP
중력과 자기
- 하모니카
- 필터 예제 -> Xarray를 통한 빠른 푸리에 변환 기반 처리
- 호주 중력 데이터
- 회충
- 웜 업데이트 <- 잠재적 필드 새로운 네트워크를 처리하기위한 약간의 업데이트로 웜 생성
- Osborne Magnetic-> 설문 조사 데이터 처리 예
지진
- 세기 오
- Segysak-> Xarray 기반 SEG -Y 데이터 처리 및 분석
- 지구 물리학 노트 -> 지진 데이터 처리
자기성
- mtpy
- 튜토리얼
- MTPY-> 위의 업데이트를 더 쉽게 만들 수 있습니다.
- 미네랄 통계 툴킷 -> MT 기능 분석까지의 거리
- 석판 지휘자 종이
- mtwaffle-> MT 데이터 분석 예제
- Pymt
- 저항성
- MECMUS-> 미국의 전기 전도도 모델을 읽는 도구
- 모델
그리드딩
- 그리니치 표준시
- 베르데
- GRID_AEROMAG-> 브라질 그리드 예제
- pyinterp-> 부스트를 통한 다차원 그리드
- pseudogravity-> Blakely, 95
반전
- 심피그
- Mira Geoscience Fork-> GeoApps에 사용됩니다
- 심프 포크
- 2020 SIMPEG 변환
- 변환 2021 Simpeg
- Simpeg 스크립트
- ASTIC 조인트 반전 예
- Gimli
- Tomofast-X
- USGS 익명 FTP
- USGS 소프트웨어 -> 오래된 유용한 것들의 더 긴 목록 : dosbox, 누구?
- 지구 물리학 서브 루틴 -> 포트란 코드
- 2020 AACHEN 역전 문제 -> 중력 반전 이론 개요
지구 화학
- 피롤 라이트
- 수준 측량
- Pygeochem 도구
- 지키미카
- Geochemistrypi
교련
- DH2Loop-> 드릴링 간격 지원
- 드릴 다운 -> geoh5py-> 노트를 통한 노트북의 드릴링 시각화
- pygslib-> 다운 홀 측량 및 간격 정규화
- pyborehole-> 시추공 데이터 가공 및 시각화
- dhcomp-> 복합 지구 물리학 적 데이터 세트에 대한 지구 물리학 적 데이터
원격 감지
- 멋진 스펙트럼 지수 -> 스펙트럼 인덱스 생성에 대한 안내서
- 개방 데이터 큐브
- DEA Notebooks-> ODC 스타일 워크 플로에서 사용할 코드
- Datacube -Stats-> ODC 용 통계 분석 라이브러리
- GEO 노트북 -> 요소 84의 코드 예제
- Raster4ml-> 많은 식생 지수
- LEFA-> 골절 분석, 리니어먼트
서버리스
- KerChunk-> zarr를 통해 클라우드 기반 데이터에 대한 서버리스 액세스
- KerChunk Geoh5-> 지구 과학자/GEOH5에 대한 액세스 KerChunk를 통해 서버리스로 프로젝트에 액세스
- IceHunk-> 클라우드 객체 저장에 사용하도록 설계된 텐서 / ND 배열 데이터 용 트랜잭션 저장 엔진.
STAC 카탈로그
- DEA STACKSTAC-> Digital Earth Australia 데이터 작업의 예
- 흡기-스틱
- ML AOI 확장
- ML 모델 확장 사양 -> 카탈로그에 대한 머신 러닝 모델 사양 스펙트로어 모델
- ODC -STAC-> 데이터베이스 무료 오픈 데이터 큐브
- Pystac
- SAT-SEARCH
- STACKSTAC-> 메타 데이터는 Dask 및 Xarray Timeseries 속도를 높였습니다
통계
- 오렌지 -> 데이터 마이닝 GUI
- HDSTATS-> 기하학적 중앙값의 알고리즘 기초
- hdmedians
심상
- TV-> 터미널에서 위성 이미지보기
- 타이티 러
- 앉아 있습니다
- hsdar
- 별
- 페루 골드 마이닝 SAR
미네랄 잠재력
- 니켈 미네랄 전위 매핑 -> ESRI 기반 분석
- 전망 온라인 도구
광업 경제학
- Bluecap-> 광산 생존력 평가를위한 Monash University의 프레임 워크
- ZIPFS 법률 -> 미네랄 증착 분포에 맞는 곡선
- pyasx-> ASX 데이터 피드 스크래핑
- 금속 가격 API-> 컨테이너 화 된 마이크로 서비스
심상
- NAPARI-> 다차원 이미지 뷰어
- Holoviews-> 대규모 데이터 시각화
- GraphViz-> 그래프 플롯/보기 지원 Windows 설치 정보
- 공간 kde
Colormaps
- CET는 지각 적으로 균일 한 컬러 맵
- PU Colormaps-> 지구 과학 분석가의 사용자를위한 형식
- Colormap Distrortions-> 지구 물리학 데이터에 대한 비 지정 컬러 맵으로 생성 된 왜곡을 보여주는 패널 앱
- Colormpas에서 데이터를 리핑합니다
- 개방형 지구 과학 코드 프로젝트
지리 공간
- Geospatial>- 여러 일반적인 Python 패키지를 설치합니다
- 지리 공간 파이썬 -> 선별 된 목록
기술 스택
기음
- GDAL-> 절대적으로 중요한 데이터 변환 및 분석 프레임 워크
- 도구 -> 노트에는 매우 유용한 많은 명령 줄 도구가 있습니다.
줄리아
- Julia Earth-> 지구 과학의 지리 공간 데이터 과학 및 지질 학적 모델링 육성
- Julia 지구 역학 -> 계산 지구 역학 코드
- 지구 과학을위한 줄리아 소개
파이썬 -Pydata
- Anaconda->이 패키지 관리자와 함께 이미 설치 한 로트를 얻으십시오.
- gdal et al -> gdal 및 tensorflow 설치로 인한 고통을 여기에서 가져옵니다.
- git bash-> git bash에서 일할 콘다
- Numpy 다차원 배열
- 팬더 표 테이블 데이터 분석
- matplotlib 시각화
- zarr-> 압축, 청크 분산 어레이
- Dask-> 병렬, 분산 컴퓨팅
- Dask Cloud Provider-> 클라우드에서 Dask 클러스터를 자동으로 시작합니다.
- Dask Median-> 노트북 Dask Median Function 프로토 타입 제공
- 파이썬 지리 공간 생태계 -> 선별 된 정보
Rust -Georust
- Georust-> 녹에서 지리 공간 유틸리티 수집
데이터베이스
- Duckdb-> 프로세스에서 olap db at 속도 - 일부 지리 공간 및 배열 기능이 있습니다.
- IBIS + DUCKDB Geopsatial-> Scipy2024 Talk
데이터 과학
- 파이썬 데이터 과학 템플릿 -> 프로젝트 패키지 설정
- 멋진 파이썬 데이터 과학 -> 선별 된 가이드
개연성
과학
- 지구 과학을위한 파이썬 리소스
- 멋진 과학 컴퓨팅
도커
- AWS 딥 러닝 컨테이너
- 공간 도커
- DL Docker Geospatial
- 흔들리는 것
- 도커 람다
- 지오베이스
- DL Docker Geospatial
온톨로지
- 퀸즐랜드 어휘의 지질 학회
- 서호주 지질 학회
- 층계
- 지구 과학 지식 관리자
- Geosciml 어휘
서적
파이썬
- 파이썬 지리 공간 분석 요리 책
- Python-> Manning LiveBook을 사용한 지오 프로세싱
다른
- 교과서
- 석유 및 가스 산업의 기계 학습
- r
- Earthdata Cloud Cookbook-> NASA 리소스에 액세스하는 방법
- Data Cleaner의 Cookbook-> 데이터가 랭글링 및 청소에 적합하게 사용할 수있는 Unix 도구를 넣습니다.
- 수학적 지구과학 백과 사전
- 수학 지구 과학의 핸드북
다른
- gxpy-> Geosoft Python API
- Eartharxiv-> Preprint Archive에서 논문을 다운로드하십시오
- Essoar-> Preprint Paper Archive
데이터세트
세계
지질학
- 기반암 -> 세계의 일반화 된 지질학
- Glim-> 글로벌 리소그래피지도
- 고생물학 Phanerozoic 고생물학적지도의 아틀라스
- 퇴적층 -> 토양, regolith 및 퇴적물 퇴적 층의 글로벌 1km 그리드 두께
- 세계 스트레스 맵 -> 지각 현재 스트레스 필드에 대한 정보의 글로벌 편집
- GMBA-> Global Mountain Inventory
지구 물리학
중력
- 곡률 -> 중력 구배 데이터의 글로벌 곡률 분석
- WGM 2012
자기학
- EAMG2V3 _> 지구 자기 이상 그리드
- WDMAM-> 세계 디지털 자기 이상 맵
자기성
- EMC-> 전기 전도도의 글로벌 3D 역 모델
지진
- 실험실 Slnaafsa
- 실험실 CAM2016
- Moho-> 젬마 데이터
- moho-> szwillus 데이터
- 지진 속도 -> Debayle et al
- Lithoref18-> 공동 역전 및 여러 데이터 세트의 분석에서 나온 쇄석 및 상부 맨틀의 글로벌 참조 모델
- 크러스트 1.0-> 글로벌 지각 모델 netcdf
- 개요 홈페이지
열의
일반적인
- Deep Time Digital Earth-> 다양한 데이터 소스 및 모델에 대한 데이터 및 시각화
- EarthChem-> 지구 화학적, 지구 학적 및 석유 학적 데이터의 커뮤니티 중심 보존, 발견, 접근 및 시각화
- Georoc-> 암석의 지구 화학적 구성
- Global Geology-> GIS 형식 (예 : Shapefile)으로 글로벌 지질 맵을 만들기위한 짧은 레시피, GTS2020 타임 스케일에 연령 범위가 매핑되었습니다.
- 대형 IGENOUS 지방위원회
- 맨틀 깃털
- 퇴적물 두께 ->지도
- SpatialReference.org-> 웹 사이트의 저장소
호주
- 일반적인 지구 모델
- 무거운 미네랄 맵
- 호주 조종사의 무거운 미네랄지도
- 반짝이는 앱
지구 화학
- 호주 대륙의 표면 암석 및 레지리스에서 주요 산화물 농도의 예측 그리드 -> 다양한 산화물
지질학
- 알칼리성 바위 아틀라스
- 신조
- 중생대
- 고생대
- Archaean
- 찾다
- Proterozoic Alkaline Rocks-> Proterozoic Alkaline 및 관련 화성암 GIS
- 신조
- 중생대
- 고생대
- Archaean
- 종이 https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/147963
- 수 문학 -> 호주의 수 문학지도
- 수 문학 -> 5m
- 계층화 된 지질학 -> 1m
- 표면 지질학 -> 1m 규모
- 호주의 mafic-ultramafic 마그마 틱 이벤트 GIS 데이터 세트
지구 물리학
자기학
- TMI-> 호주의 자기 이상지도, 제 7 판, 2019 TMI
- 40m-> 40m 버전
- VRTP-> 폴에 가변 감소 (VRTP) 2019의 호주의 총 자기 강도 (TMI) 그리드
- 1VD-> 호주의 총 자기 강도 그리드 2019- 최초의 수직 파생물 (1VD)
방사성
- 방사선 측정 -> 호주의 완전한 방사선 메트릭 그리드 (RADMAP) V4 2019 모델링 된 충전
- K-> 호주의 방사선 메트릭 그리드 (RADMAP) v4 2019 필터링 된 PCT 칼륨 그리드
- U-> 호주의 방사선 그리드 (RADMAP) v4 2019 필터링 된 PPM 우라늄
- Th-> 호주의 방사선 메트릭 그리드 (Radmap) v4 2019 필터링 된 ppm Thorium
- Th/K-> 호주의 방사선 측정 그리드 (Radmap) v4 2019 비율 칼륨의 토륨.
- U/K-> 호주의 방사선 측정 (RADMAP) V4 2019 칼륨의 우라늄 비율
- U/TH-> 호주의 방사선 측정 그리드 (RADMAP) v4 2019 비율 우라늄 토륨
- U 제곱/TH-> 호주의 방사선 그리드 (RADMAP) v4 2019 비율 우라늄 제곱 비율 Thorium
- 복용량-> 호주의 방사선 측정 그리드 (RADMAP) v4 2019 여과 된 지상 용량 률
- Ternary Picture-> 호주의 방사선 그리드 (Radmap) v4 2019- Ternary Image (K, Th, U)
AUSAEM
- AUSAEM 1-> AUSAEM 연도 1 NT/QLD Airborne Electromagnetic Survey; GA 층 층 지구 반전 제품
- AUSAEM 1-> AUSAEM Year 1 NT/QLD : Tempest® Airborne Electromagnetic Data 및 EM Flow® 전도도 추정치
- AUSAEM 1-> AUSAEM1 해석 데이터 패키지
- AUSAEM 2-> AUSAEM 02 WA/NT 2019-20 항공 전자기 조사
- AUSAEM – WA-> AUSAEM – WA, Murchison Airborne 전자기 조사 블록
- AUSAEM – WA-> AUSAEM-WA, Southwest-Albany Airborne 전자기 조사 블록
- AUSAEM – WA-> AUSAEM WA 2020-21, Eastern Goldfields & East Yilgarn Airborne
- AUSAEM – WA-> AUSAEM (WA) 2020-21, EARAHEEDY & DESERT 스트립
- AUSAEM ERC-> AUSAEM Eastern Resources 복도
- AUSAEM WRC-> AUSAEM Western Resources Corridor
- Interp 개요
- 국가 표면 및 표면 근처 전도도 그리드 -> 호주 북부와 유사한 방식으로 보조제에 대한 국가 ML 보간
Auslamp
- Auslamp Sea-> Auslamp Magnetotelluric 데이터에서 남동부 호주 본토의 저항성 모델
- 빅토리아 데이터
- NSW 데이터
- Auslamp Tisa-> Magnetotellurics에서 파생 된 저항 모델 : Auslamp -Tisa Project
- Auslamp Delamerian-> Auslamp Magnetotelluric 데이터의 Delamerian Orogen의 Lithospheric 저항 모델
- Auslamp ne sa
- Auslamp Gawler
- Auslamp Stations-> 2017 년경
- Tasmanides 종이
모호
미네랄 퇴적물
- 호주 주요 미네랄 퇴적물의 지질 학적 환경, 연령 및 기부금
- 호주 광산 생산을위한 포괄적 인 데이터 세트 1799 ~ 2021
미네랄 잠재력
- 개요 - 지구 과학 호주 -> 출판물 및 데이터 세트 개요
- 퇴적물 호스 아연
- 보고서
- 퇴적물을 호스팅했습니다
- 보고서
- 추상적인
- 카르 보 나이트 희토류 요소
광산 폐기물
기본 제목
원격 감지
- Landsat Bare Earth- Landsat의 Bare Earth 중앙값
- 토양 및 석판 학적 모델링을위한 강화 된 Barest Earth Landsat 이미지 : 데이터 세트 -> 향상의 세부 사항
- 고해상도 위성 이미지에서 매핑 된 글로벌 마이닝 풋 프린트 ** 논문
- DEM-> Australia 1 Sec Srtm 다양한 품종
구조
속도
- AU Tomo-> 동기 및 비동기 주변 소음 영상에서 호주 크러스트의 차세대 속도 모델
지형
- 멀티 스케일 지형 위치 -RGB
- 정보
- 지형 습윤 지수 -1 및 3 초
- 정보
- 지형 위치 색인 -1 및 3 초
- 정보
- 풍화 강도 모델
- 정보
- {info] (https://researchdata.edu.au/weathering-intensity-model-australia/1361069)
북부 사투리
- 커버 두께 TISA-> 보간 그리드가있는 테넌트 크릭 MT ISA의 커버 두께 포인트
- 지역 AEM 조사 및 기계 학습을 사용한 고해상도 전도도 매핑 -> AUSAEM에 대한 ML 전도도 보간
- 확장 된 초록
- 솔리드 지질학 -> 북부 호주 크라톤의 견고한 지질학
- 역전 모델 -> 북부 오스트레일리아 크라톤 3D 중력 및 자기 반전 모델
- Ni-CU-PGE-> 호주의 침입 호스팅 Ni-CU-PGE 설파이드 퇴적물 가능성 : 미네랄 시스템 전망의 대륙 규모 분석
- Tisa iocg-> Tennant Creek의 산화철 구리 -골드 (IOCG) 미네랄 잠재적 평가 -MT ISA 지역 : 지리 공간 데이터
- Tisa 변경 -> 3D 중력 및 자기 역전을 사용한 자철석 및 적철광 변경 프록시 생성
남호주
지질학
- 기반암 지질학
- 결정질 지하실 -> 결정질 지하실 교차 훈련
- 광산과 미네랄 퇴적물
- 미네랄 드릴홀
- 솔리드 지질학 3D
- 100k 결함
- Archaean
- 고고한 결점
- mesoproterozoic-> 중간
- mesoproterozoic-> 중간 결함
- mesoproterozoic-> 늦었다
- mesoproterozoic 결함 -> 늦은 결함
- 신생적
- 신생적 결함
- 스튜어트 선반 퇴적 구리 3D 모델
- 표면 지질학
지구 물리학
- Auslamp 3D-> Magnetotelluric 반전
- GCAS-> Gawler Craton Airborne 조사
- 중력 -> 중력 그리드
- 스테이션 -> 중력 스테이션
- 자기 -> 자기 -자기
- 지진 선 -> 지진 선
gawler
- Gawler MPP -> Gawler 미네랄 프로모션 프로젝트 - 데이터
퀸즈랜드
- 개요
- 딥 마이닝 퀸즐랜드-> 딥 마이닝 퀸즐랜드
- 입금 아틀라스 -> 북서 미네랄 지방 예금 아틀라스
- 지질학 -> 지질 시리즈 개요
- 광물 및 에너지 보고서 -> 북서쪽 퀸즐랜드 미네랄 및 에너지 성 보고서 2011 -NWQMEP
- 벡터 -> 미네랄 지구 화학 벡터링
- 석유 우물
- 석탄 이음새 가스 우물
- 드릴홀
Cloncurry
노던 테리토리
- Arunta iocg-> 남부 아 런타 지역의 철 산화물-코퍼-골드 잠재력
- 사우스 우라늄 -> 남부 노던 테리토리 우라늄 및 지열 에너지 시스템 평가 DIGIL 데이터 패키지
- Tennant Creek-> Northern Territory East Tennant 지역의 Magnetotelluric 데이터에서 파생 된 전도도 모델
뉴 사우스 웨일즈
지질학
- Seamless Geology-> NSW Seamless Geology Data Package (이 페이지의 이전 버전)
미네랄 잠재적 데이터 패키지
- Curnamona
- 동부 로클란
- 중앙 Lachlan
- 뉴 잉글랜드 남부
서호주
지구 화학
지질학
- 100k 기반암
- 표면을위한 100k 맵 시트 개별적으로 다운로드하고 결합해야합니다 - 일관성이 없습니다.
- 표면을위한 250k 맵 시트 개별적으로 다운로드하고 결합해야합니다 - 일관성이 없습니다.
- 500k 기반암
- 버려진 광산
- 미네랄 발생
미네랄 잠재력
전망
- 미네랄 시스템 접근법을 사용한 염소 자리 -> 전망 분석 - 염소 자리 사례 연구 프로젝트
- King Leopold-> King Leopold Orogen 및 Lennard Shelf의 미네랄 전망 : West Kimberley 지역의 잠재적 인 현장 데이터 분석
- Yilgarn Gold
- Yilgarn 2-> 동부 Yilgarn Craton의 예측 광물 발견 : Orogenic Gold Mineral System의 지구 규모 표적화의 예
- [Shop Note] -> WA는 50-60AU 유형 가격으로 USB 드라이브에서 구매할 수있는 몇 가지 전망 패키지가 있습니다.
태즈메이니아
지질학
- 250,000
- 500,000
- 25K
- 미네랄 발생
- 3D 모델
빅토리아
뉴질랜드
- 미네랄 데이터 팩 -> 미네랄 탐사 데이터 팩
북미
- 국가 규모 지구 물리학, 지질 및 광물 자원 데이터 및 그리드 -> 또한 호주 데이터도 있습니다.
- 지하수 우물 -> 데이터베이스
- 북미 전역의 최대 수평 응력 방향 및 상대 응력 크기 (결함 체제) 데이터
캐나다
지질학
- 지도
- 지질학 -> 업데이트 된 기반 지질학 맵
- 지질학 -> 기반 지질학 편집 및 사우스 래의 지역 합성 및 하스 앤 도메인, 처칠 지방, 노스 웨스트 영토, 서스 캐처 원, 누나 부트, 매니토바 및 앨버타
- Moho-> Moho 깊이의 국가 데이터베이스는 지진 굴절 및 텔레비네이션 조사의 추정치를 추정합니다.
지구 물리학
- DAP 검색 -> 지오 포르탈 검색 - 성가신 일에주의해서 Geosoft 그리드에 있습니다 - 전환 가능성은 다른 것을 참조하십시오.
- [중력, 자기, 방사선 측정법] -> 대부분 국가 규모
유럽
핀란드
- Fodd-> Fennoscandian 미네랄 퇴적물
아일랜드
코드가있는 논문
NLP
- https://www.sciencendirect.com/science/article/pii/s25901974220064?via%3dihub#bib20--> 고유 평가 -> Nrcan Code [nrcan code [model 포함]
- https://www.researchgate.net/publication/334507958_word_embeddings_for_application_in_geosciences_development_evaluation_and_examples_of_soil-related_concepts-> geoveec [포함 모델]
- https://www.researchgate.net/publication/347902344_portuguese_word_embeddings_for_the_oil_and_gas_industry_development_and_evaluation-> petrovec [모델 포함]
- 저널 보충제에서 지구 화학 데이터 세트의 자동 검색 및 콜라주를위한 리소스
지구 화학
- https://www.researchgate.net/publication/365758387_a_resource_for_outomated_search_and_collation_of_geochemical_datasets_from_journal_supplements
- https://github.com/erinlmartin/figshare_geoscrape?s=09
지질학
- https://github.com/sydney-machine-learning/autoencoders_remotesensing-> lithological 매핑을위한 스택 된 자동 인코더
광물
- https://www.researchgate.net/publication/318839364_network_analysis_of_mineralogical_systems
기능 데이터가있는 논문
- 이들은 주어진 데이터에서 출력을 지리적으로 재현 할 수 있습니다.
미네랄 전망
- https://www.sciencedirect.com/science/article/pii/s0169136821000x#s0135-> Canadian Magmatic Ni (± Cu ± Co ± Co ± pge) 설파이드 미네랄 시스템의 전망 모델링 [잘 읽는 가치가 있습니다]
- https://www.sciencendirect.com/science/article/pii/s016913682100612#B0510-> 퇴적물 Zn – PB 미네랄 시스템의 데이터 -유도 전망 모델링 Zn – PB 미네랄 시스템 및 그 중요한 원료 [잘 읽는 가치가 있습니다.
- https://www.researchgate.net/publication/358956673_towards_a_data-data-driven_prospectivity_mapping_methodology_a_case_study_of_the_southeastern_churchill_province_quebec_and_labrador
영국
- https://www.researchgate.net/publication/358083076_machine_learning_for_geochemical_exploration_classifying_metallogenic_fertility_in_arc_magmas_and_insights_into_porphyry_copper_deposit_formation
지구 화학
- https://www.researchgate.net/publication/361076789_automated_machine_learning_pipeline_for_geochemical_analysis
지질학
- https://eprints.utas.edu.au/32368/-> Lithology 및 metasomatism의 기계 보조 모델링
지구 물리학
- https://github.com/tomasnaprstek/aeromagnetic_cnn- Aeromagnetic CNN
- 종이 https://www.researchgate.net/publication/354772176_convolution_neural_networks_applied_to_the_interpretation_of_lineaments_in_aeromagnetic_data
- PhD-> 항균 데이터에서 계보의 보간 및 해석을위한 새로운 방법
- 논문 https://www.researchgate.net/publication/354772176_convolution_neural_networks_applied_to_the_interpretation_of_lineaments_in_aeromagnetic_data-> Aeromagnetic Data의 해석에 적용되는 Convolution 신경 네트워크.
지리 공간 출력 - 코드 없음
- https://geoscience.data.qld.gov.au/report/cr113697-> NWMP 데이터 구동 광물 탐사 및 지질 매핑 [CSIRO도]
저널
- https://www.sciencedirect.com/journal/artificial-intelligence-in-geosciences-> 지구 과학의 인공 지능
서류
- 일반적으로 ML이 아니거나 코드/데이터가 없으며 때로는 가용성이 전혀 없습니다.
- 결국 데이터 패키지가 있거나 NSW 영역 연구와 같은 것들로 분리됩니다.
- 그러나 지역에 관심이 있다면 거친 가이드로 다른 것이 없다면 종종 그림을 지정할 수 있습니다.
- 일반적으로 이것들은 재현 할 수 없습니다. NSW 전망대 연구와 같은 일부는 NWQMP가 일부 작업을 수행하고 있습니다.
- 이 섹션의 가끔 논문은 위에 나열 될 수 있습니다.
새 파일에 새로워집니다
일반적인
- https://www.researchgate.net/publication/337650865_a_combinative_knowledge-driven_integration_method_for_integrating_geophysical_layers_with_geological_and_geochemical_datasets
- https://link.springer.com/article/10.1007/S11053-023-10237-W- 미네랄 전망 매핑을위한 새로운 세대의 인공 지능 알고리즘
- https://www.researchgate.net/publication/235443297_addressing_challenges_with_exploration_datasets_to_generate_usable_mineral_potential_maps
- https://www.researchgate.net/publication/330077321_an_improved_data-driven_multiple_criteria_decision-making_procedure_for_spatial_modeling_of_mineral_prospect_adaption_of_prediction-area_andplot_andplot _andphotic
- 미네랄 탐사를위한 인공 지능 : 데이터 과학의 미래 방향에 대한 검토 및 관점 -> https://www.sciencedirect.com/science/article/pii/s001282524002691
- https://www.researchgate.net/project/bayesian-machine-machine-for-gegeological-modeling-and-geophysical-segmentation
- https://www.researchgate.net/publication/229714681_classifiers_for_modeling_of_mineral_potential
- https://www.researchgate.net/publication/352251078_data_analysis_methods_for_prospectivity_modelling_as_applied_to_mineral_exploration_targeting_state-of-art_and_outlook
- https://www.researchgate.net/publication/267927728_data-driven_evidential_belief_modeling_of_mineral_potential_using_few_prospects_and_evidence_with_missing_values
- https://www.linkedin.com/pulse/deep-learning-meets-downward-caldera-analytics/?trackingid=ybkv3ukni7ygh3irchzdgw%3d%3d
- https://www.researchgate.net/publication/382560010_dinov2_rocks_geological_image_analysis_classification_segmentation_and_interpretability
- https://www.researchgate.net/publication/368489689_discrimination_of_pb-zn_deposit_types_using_sphalerite_geochemistry_new_insights_from_machine_legorithm
- https://link.springer.com/article/10.1007/s11430-024-1309-9-> 미네랄 전망 매핑을위한 설명 가능한 인공 지능 모델
- https://www.researchgate.net/publication/229792860_prom_predictive_mapping_of_mineral_prospectivity_quantitative_estimation_of_number_of_undiscovered_prospects
- https://www.researchgate.net/publication/339997675_ly_Reversible_neural_networks_for_large-scale_surface_and_sub-surface_characterization_via_remote_sensing
- https://www.researchgate.net/publication/220164488_geocomputation_mineral_exploration_targets
- https://www.researchgate.net/publication/272494576_geological_knowledge_discovery_and_minerals_targeting_from_regolith_using_a_machine_learning_learning_learning_learning_learning_learning_learning_learning_learn
- https://www.researchgate.net/publication/280013864_Geometric_average_of_spatial_evidence_data_layers_A_GIS-based_multi-criteria_decision-making_approach_to_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/355467413_harnessing_the_the_power_of_artificial_intelligence_and_machine_learning_in_mineral_exploration-opportunities_and_cautionary_notes
- https://www.researchgate.net/publication/335819474_importance_of_spatial_predictor_variable_selection_in_machine_learning_applications_-moving_from_data_reproduction_to_spatial_prediction
- https://www.researchgate.net/publication/337003268_improved_supervised_classification_of_of_bedrock_in_areas_of_transported_overburden_applying_Applying_oxpertise_AT_KERKASHA_ERITREA- Gazley/Hood
- https://www.researchgate.net/publication/360660467_lithospheric_conductors_reveal_source_regions_of_convergent_margin_mineral_systems
- https://api.research-repository.uwa.edu.au/portalfiles/portal/5263287/lysytsyn_volodymyr_2015.pdf (phd 논문) GIS 기반 상피 구리 전망도 매핑 MT ISA Inlier, 호주 : 탐사 대상을위한 내부.
- https://www.researchgate.net/publication/374972769_ knowledge_and_technology_transfer_in_in_and_beyond_mineral_exploration-> 광물 탐사 및 그 이상의 지식 및 기술 전달
- https://www.researchgate.net/publication/331946100_machine_learning_for_data-driven_discovery_in_solid_earth_geoscience
- https://theses.hal.science/tel-04107211/document- 지하학적 이종 소스를위한 기계 학습 접근법
- https://www.researchgate.net/publication/309715081_magmato-hydrothermal_space_a_new_metric_for_geochemical_characterisation_of_of_or_deposits-magmato-hydrothermal : Magmato-hydrothermal의 새로운 지하학적 특성에 대한 새로운 지표의 지하학 적 특성.
- https://www.researchgate.net/publication/220164234_mapping_complexity_of_spatial_distribution_of_faults_factal_and_multifractal_models_vectoring_towards_exploration_targets
- https://www.researchgate.net/publication/220163838_objective_selection_of_suitable_unit_cell_size_in_data-driven_modeling_of_mineral_prospectivity
- https://www.researchgate.net/publication/273500012_prediction-area_p-a_plot_and_c-a_fractal_analysis_to_classify_and_evaluate_evidential_maps_for_for_mineral_prospectivity_modeling
- https://www.researchgate.net/publication/354925136_soil-sample_geochemistry_normalised_by_class_membership_from_machine-learnt_clusters_of_satellite_and_geophysics_data [gazley/hood]
- https://link.springer.com/article/10.1007/S12665-024-11870-1-> 인간 감각적 참여에 의존하는 지구 과학지도의 불확실성의 정량화
- https://www.researchgate.net/publication/235443294_the_effect_of_map-scale_on_geological_complexity
- https://www.researchgate.net/publication/235443305_the_effect_of_map_scale_on_geological_complexity_for_computer-aided_exploration_targeting
- https://link.springer.com/article/10.1007/s11053-024-10322-8-> 데이터 중심의 광물 전망대 매핑에서 워크 플로우-유도 불확실성
미네랄 전망
호주
- https://www.mdpi.com/2072-4292/15/16/4074-> 미네랄 전망 매핑을위한 공간 데이터 구동 접근 방식
- https://www.researchgate.net/publication/353253570_a_truly_spatial_random_forests_algorithm_for_geoscience_data_analysion_and_modelling
- https://www.researchgate.net/publication/253217016_advanced_methodologies_for_the_analysion_of_databases_mineral_deposits_and_major_faults
- https://www.researchgate.net/publication/362260616_assessing_the_thepact_of_concepual_mineral_systems_uncture_on_prospectivity_predictions
- https://www.researchgate.net/publication/352310314_central_lachlan_mineral_potential_study
- https://meg.resourcesregulator.nsw.gov.au/sites/default/files/2024-05/eith%202024%20muller_exploration_in_the_house_keynote.pdf-> 생성 AI를 사용한 미래성 매핑
- https://www.tandfonline.com/doi/pdf/10.1080/22020586.2019.12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159?12073159? Gawler Craton, 남호주
- https://www.researchgate.net/publication/365697240_mineral_potential_modelling_of_orogenic_gold_systems_in_the_granites-tanami_orogen_northern_territory_australia_a_multi-technique_que-dreproach
- https://publications.csiro.au/publications/publication/picsiro:ep2022-0483-> Queensland의 동부 마운트 ISA 지방의 주요 광물 시스템의 서명 : 데이터 분석의 새로운 관점
- https://link.springer.com/article/10.1007/s11004-021-09989-z-> 광물 탐사 목표의 확률 론적 모델링
- https://www.researchgate.net/publication/276171631_Supervised_Neural_Network_Targeting_and_Classification_Analysis_of_Airborne_EM_Magnetic_and_Gamma-ray_Spectrometry_Data_for_Mineral_Exploration
- https://www.researchgate.net/publication/353058758_Using_Machine_Learning_to_Map_Western_Australian_Landscapes_for_Mineral_Exploration
- https://www.researchgate.net/publication/264535019_Weights-of-evidence_and_logistic_regression_modeling_of_magmatic_nickel_sulfide_prospectivity_in_the_Yilgarn_Craton_Western_Australia
아르헨티나
- https://www.researchgate.net/publication/263542691_ANALYSIS_OF_SPATIAL_DISTRIBUTION_OF_EPITHERMAL_GOLD_DEPOSITS_IN_THE_DESEADO_MASSIF_SANTA_CRUZ_PROVINCE
- https://www.researchgate.net/publication/263542560_EVIDENTIAL_BELIEF_MAPPING_OF_EPITHERMAL_GOLD_POTENTIAL_IN_THE_DESEADO_MASSIF_SANTA_CRUZ_PROVINCE_ARGENTINA
- https://www.researchgate.net/publication/277940917_Porphyry_epithermal_and_orogenic_gold_prospectivity_of_Argentina
- https://www.researchgate.net/publication/269518805_Prospectivity_for_epithermal_gold-silver_deposits_in_the_Deseado_Massif_Argentina
- https://www.researchgate.net/publication/235443303_Prospectivity_mapping_for_multi-stage_epithermal_gold_mineralization_in_Argentina
브라질
- https://www.researchgate.net/publication/367245252_Geochemical_multifractal_modeling_of_soil_and_stream_sediment_data_applied_to_gold_prospectivity_mapping_of_the_Pitangui_Greenstone_Belt_northwest_of_Quadrilatero_Ferrifero_Brazil
- https://www.researchgate.net/publication/381880769_How_do_non-deposit_sites_influence_the_performance_of_machine_learning-based_gold_prospectivity_mapping_A_study_case_in_the_Pitangui_Greenstone_Belt_Brazil
- https://www.researchsquare.com/article/rs-5066453/v1 -> Enhancing Lithium Exploration in the Borborema Province, Northeast Brazil: Integrating Airborne Geophysics, Low-Density Geochemistry, and Machine Learning Algorithms
- https://www.researchgate.net/publication/362263694_Machine_Learning_Methods_for_Quantifying_Uncertainty_in_Prospectivity_Mapping_of_Magmatic-Hydrothermal_Gold_Deposits_A_Case_Study_from_Juruena_Mineral_Province_Northern_Mato_Grosso_Brazil
- https://www.researchgate.net/publication/360055592_Predicting_mineralization_and_targeting_exploration_criteria_based_on_machine-learning_in_the_Serra_de_Jacobina_quartz-pebble-metaconglomerate_Au-U_deposits_Sao_Francisco_Craton_Brazil
흐린
- https://www.researchgate.net/publication/272170968_A_Comparative_Analysis_of_Weights_of_Evidence_Evidential_Belief_Functions_and_Fuzzy_Logic_for_Mineral_Potential_Mapping_Using_Incomplete_Data_at_the_Scale_of_Investigation A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation
- https://www.researchgate.net/publication/360386350_Application_of_Fuzzy_Gamma_Operator_to_Generate_Mineral_Prospectivity_Mapping_for_Cu-Mo_Porphyry_Deposits_Case_Study_Kighal-Bourmolk_Area_Northwestern_Iran
- https://www.researchgate.net/publication/348823482_Combining_fuzzy_analytic_hierarchy_process_with_concentration-area_fractal_for_mineral_prospectivity_mapping_A_case_study_involving_Qinling_orogenic_belt_in_central_China
- https://tupa.gtk.fi/raportti/arkisto/m60_2003_1.pdf -> Conceptual Fuzzy Logic Prospectivity Analysis of the Kuusamo Area
- https://www.researchgate.net/publication/356508827_Geophysical-spatial_Data_Modeling_using_Fuzzy_Logic_Applied_to_Nova_Aurora_Iron_District_Northern_Minas_Gerais_State_Southeastern_Brazil
- https://www.researchgate.net/publication/356937528_Mineral_prospectivity_mapping_a_potential_technique_for_sustainable_mineral_exploration_and_mining_activities_-_a_case_study_using_the_copper_deposits_of_the_Tagmout_basin_Morocco
캐나다
- http://www.geosciencebc.com/i/pdf/SummaryofActivities2015/SoA2015_Granek.pdf -> Advanced Geoscience Targeting via Focused Machine Learning Applied to the QUEST Project Dataset, British Columbia
- https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0340340 -> Application of machine learning algorithms to mineral prospectivity mapping
- https://www.researchgate.net/publication/369599705_A_study_of_faults_in_the_Superior_province_of_Ontario_and_Quebec_using_the_random_forest_machine_learning_algorithm_spatial_relationship_to_gold_mines
- https://www.researchgate.net/publication/273176257_Data-_and_Knowledge_driven_mineral_prospectivity_maps_for_Canada's_North
- https://www.researchgate.net/publication/300153215_Data_mining_for_real_mining_A_robust_algorithm_for_prospectivity_mapping_with_uncertainties
- https://www.sciencedirect.com/science/article/pii/S1674987123002268 -> Development and application of feature engineered geological layers for ranking magmatic, volcanogenic, and orogenic system components in Archean greenstone belts
- https://qspace.library.queensu.ca/bitstream/handle/1974/28138/Cevik_Ilkay_S_202009_MASc.pdf?sequence=3&isAllowed=y -> MACHINE LEARNING ENHANCEMENTS FOR KNOWLEDGE DISCOVERY IN MINERAL EXPLORATION AND IMPROVED MINERAL RESOURCE CLASSIFICATION
- https://www.researchgate.net/publication/343511849_Identification_of_intrusive_lithologies_in_volcanic_terrains_in_British_Columbia_by_machine_learning_using_Random_Forests_the_value_of_using_a_soft_classifier
- https://www.researchgate.net/publication/365782501_Improving_Mineral_Prospectivity_Model_Generalization_An_Example_from_Orogenic_Gold_Mineralization_of_the_Sturgeon_Lake_Transect_Ontario_Canada
- https://www.researchgate.net/publication/348983384_Mineral_prospectivity_mapping_using_a_VNet_convolutional_neural_network
- corporate link
- https://www.researchgate.net/publication/369048379_Mineral_Prospectivity_Mapping_Using_Machine_Learning_Techniques_for_Gold_Exploration_in_the_Larder_Lake_Area_Ontario_Canada
- https://www.researchgate.net/publication/337167506_Orogenic_gold_prospectivity_mapping_using_machine_learning
- https://www.researchgate.net/publication/290509352_Precursors_predicted_by_artificial_neural_networks_for_mass_balance_calculations_Quantifying_hydrothermal_alteration_in_volcanic_rocks
- https://link.springer.com/article/10.1007/s11053-024-10369-7 -> Predictive Modeling of Canadian Carbonatite-Hosted REE +/− Nb Deposits
- https://www.sciencedirect.com/science/article/pii/S0098300422001406 -> Preliminary geological mapping with convolution neural network using statistical data augmentation on a 3D model
- https://www.researchgate.net/publication/352046255_Study_of_the_Influence_of_Non-Deposit_Locations_in_Data-Driven_Mineral_Prospectivity_Mapping_A_Case_Study_on_the_Iskut_Project_in_Northwestern_British_Columbia_Canada
- https://www.researchgate.net/publication/220164155_Support_vector_machine_A_tool_for_mapping_mineral_prospectivity
- https://www.researchgate.net/publication/348111963_Support_Vector_Machine_and_Artificial_Neural_Network_Modelling_of_Orogenic_Gold_Prospectivity_Mapping_in_the_Swayze_greenstone_belt_Ontario_Canada
- PhD thesis -> https://zone.biblio.laurentian.ca/bitstream/10219/3736/1/PhD%20Thesis%20Maepa_20210603.%281%29.pdf -> Exploration targeting for gold deposits using spatial data analytics, machine learning and deep transfer learning in the Swayze and Matheson greenstone belts, Ontario, Canada
- https://data.geology.gov.yk.ca/Reference/95936#InfoTab -> Updates to the Yukon Geological Survey's mineral potential mapping methodology
- http://www.geosciencebc.com/i/pdf/SummaryofActivities2015/SoA2015_Granek.pdf -> Advanced Geoscience Targeting via Focused Machine Learning Applied to the QUEST Project Dataset, British Columbia
중앙아프리카
- https://www.researchgate.net/publication/323452014_The_Utility_of_Machine_Learning_in_Identification_of_Key_Geophysical_and_Geochemical_Datasets_A_Case_Study_in_Lithological_Mapping_in_the_Central_African_Copper_Belt
- https://www.researchgate.net/publication/334436808_Lithological_Mapping_in_the_Central_African_Copper_Belt_using_Random_Forests_and_Clustering_Strategies_for_Optimised_Results
칠레
- https://www.researchgate.net/publication/341485750_Evaluation_of_random_forest-based_analysis_for_the_gypsum_distribution_in_the_Atacama_desert
중국
- https://www.researchgate.net/publication/374968979_3D_cooperative_inversion_of_airborne_magnetic_and_gravity_gradient_data_using_deep_learning_techniques - 3D cooperative inversion of airborne magnetic and gravity gradient data using deep learning techniques [UNSEEN]
- https://www.researchgate.net/publication/369919958_3D_mineral_exploration_Cu-Zn_targeting_with_multi-source_geoscience_datasets_in_the_Weilasituo-bairendaba_district_Inner_Mongolia_China
- https://www.researchgate.net/publication/350817136_3D_Mineral_Prospectivity_Mapping_Based_on_Deep_Metallogenic_Prediction_Theory_A_Case_Study_of_the_Lala_Copper_Mine_Sichuan_China
- https://www.researchgate.net/publication/336771580_3D_Mineral_Prospectivity_Mapping_with_Random_Forests_A_Case_Study_of_Tongling_Anhui_China
- https://www.sciencedirect.com/science/article/pii/S0169136823005772 -> 3D mineral prospectivity modeling in the Sanshandao goldfield, China using the convolutional neural network with attention mechanism
- https://www.sciencedirect.com/science/article/pii/S0009281924001144 -> 3D mineral prospectivity modeling using deep adaptation network transfer learning: A case study of the Xiadian gold deposit, Eastern China
- https://www.sciencedirect.com/science/article/pii/S0009281924000497 -> 3D mineral prospectivity modeling using multi-scale 3D convolution neural network and spatial attention approaches
- https://www.researchgate.net/publication/366201930_3D_Quantitative_Metallogenic_Prediction_of_Indium-Rich_Ore_Bodies_in_the_Dulong_Sn-Zn_Polymetallic_Deposit_Yunnan_Province_SW_China
- https://www.researchgate.net/publication/329600793_A_combined_approach_using_spatially-weighted_principal_components_analysis_and_wavelet_transformation_for_geochemical_anomaly_mapping_in_the_Dashui_ore-concentration_district_Central_China
- https://www.researchgate.net/publication/349034539_A_Comparative_Study_of_Machine_Learning_Models_with_Hyperparameter_Optimization_Algorithm_for_Mapping_Mineral_Prospectivity
- https://www.researchgate.net/publication/354132594_A_Convolutional_Neural_Network_of_GoogLeNet_Applied_in_Mineral_Prospectivity_Prediction_Based_on_Multi-source_Geoinformation
- https://www.researchgate.net/publication/369865076_A_deep-learning-based_mineral_prospectivity_modeling_framework_and_workflow_in_prediction_of_porphyry-epithermal_mineralization_in_the_Duolong_Ore_District_Tibet
- https://www.researchgate.net/publication/374982967_A_Framework_for_Data-Driven_Mineral_Prospectivity_Mapping_with_Interpretable_Machine_Learning_and_Modulated_Predictive_Modeling
- https://www.sciencedirect.com/science/article/pii/S0169136824002026 -> A Global-Local collaborative approach to quantifying spatial non-stationarity in three-dimensional mineral prospectivity modeling
- https://link.springer.com/article/10.1007/s11053-024-10344-2 -> A Heterogeneous Graph Construction Method for Mineral Prospectivity Mapping [UNSEEN]
- https://www.researchgate.net/publication/353421842_A_hybrid_logistic_regression_gene_expression_programming_model_and_its_application_to_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/375764940_A_lightweight_convolutional_neural_network_with_end-to-end_learning_for_three-dimensional_mineral_prospectivity_modeling_A_case_study_of_the_Sanhetun_Area_Heilongjiang_Province_Northeastern_China
- https://www.researchgate.net/publication/339821823_A_Monte_Carlo-based_framework_for_risk-return_analysis_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/373715610_A_Multimodal_Learning_Framework_for_Comprehensive_3D_Mineral_Prospectivity_Modeling_with_Jointly_Learned_Structure-Fluid_Relationships
- https://www.sciencedirect.com/science/article/pii/S0169136824001343 -> A novel hybrid ensemble model for mineral prospectivity prediction: A case study in the Malipo W-Sn mineral district, Yunnan Province, China
- https://www.researchgate.net/publication/347344551_A_positive_and_unlabeled_learning_algorithm_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/335036019_An_Autoencoder-Based_Dimensionality_Reduction_Algorithm_for_Intelligent_Clustering_of_Mineral_Deposit_Data
- https://www.researchgate.net/publication/363696083_An_Integrated_Framework_for_Data-Driven_Mineral_Prospectivity_Mapping_Using_Bagging-Based_Positive_Unlabeled_Learning_and_Bayesian_Cost-Sensitive_Logistic_Regression
- https://link.springer.com/article/10.1007/s11053-024-10349-x -> An Uncertainty-Quantification Machine Learning Framework for Data-Driven Three-Dimensional Mineral Prospectivity Mapping
- https://link.springer.com/article/10.1007/s11004-023-10076-8 - An Interpretable Graph Attention Network for Mineral Prospectivity Mapping
- https://www.researchgate.net/publication/332751556_Application_of_hierarchical_clustering_singularity_mapping_and_Kohonen_neural_network_to_identify_Ag-Au-Pb-Zn_polymetallic_mineralization_associated_geochemical_anomaly_in_Pangxidong_district
- https://www.mdpi.com/2075-163X/14/9/945 -> Application of Machine Learning to Characterize Metallogenic Potential Based on Trace Elements of Zircon: A Case Study of the Tethyan Domain
- https://www.researchgate.net/publication/339096362_Application_of_nonconventional_mineral_exploration_techniques_case_studies
- https://www.researchgate.net/publication/325702993_Assessment_of_Geochemical_Anomaly_Uncertainty_Through_Geostatistical_Simulation_and_Singularity_Analysis
- https://www.researchgate.net/publication/368586826_Bagging-based_Positive-Unlabeled_Data_Learning_Algorithm_with_Base_Learners_Random_Forest_and_XGBoost_for_3D_Exploration_Targeting_in_the_Kalatongke_District_Xinjiang_China
- https://link.springer.com/article/10.1007/s11004-024-10153-6 -> Causal Discovery and Deep Learning Algorithms for Detecting Geochemical Patterns Associated with Gold-Polymetallic Mineralization: A Case Study of the Edongnan Region [UNSEEN]
- https://www.sciencedirect.com/science/article/pii/S0169136824001409 -> CNN-Transformers for mineral prospectivity mapping in the Maodeng–Baiyinchagan area, Southern Great Xing'an Range
- https://www.researchgate.net/publication/347079505_Convolutional_neural_network_and_transfer_learning_based_mineral_prospectivity_modeling_for_geochemical_exploration_of_Au_mineralization_within_the_Guandian-Zhangbaling_area_Anhui_Province_China
- https://www.researchgate.net/publication/352703015_Data-driven_based_logistic_function_and_prediction-area_plot_for_mineral_prospectivity_mapping_a_case_study_from_the_eastern_margin_of_Qinling_orogenic_belt_central_China
- https://www.sciencedirect.com/science/article/abs/pii/S0012825218306123 -> Deep learning and its application in geochemical mapping
- https://www.frontiersin.org/articles/10.3389/feart.2024.1308426/full -> Deep gold prospectivity modeling in the Jiaojia gold belt, Jiaodong Peninsula, eastern China using machine learning of geometric and geodynamic variables
- https://www.researchgate.net/publication/352893038_Detection_of_geochemical_anomalies_related_to_mineralization_using_the_GANomaly_network
- https://www.researchgate.net/publication/357685352_Determination_of_Predictive_Variables_in_Mineral_Prospectivity_Mapping_Using_Supervised_and_Unsupervised_Methods
- https://www.sciencedirect.com/science/article/abs/pii/S0375674221001370 -> Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition
- https://www.researchgate.net/publication/340401748_Effects_of_Random_Negative_Training_Samples_on_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/360333702_Ensemble_learning_models_with_a_Bayesian_optimization_algorithm_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/267927676_Evaluation_of_uncertainty_in_mineral_prospectivity_mapping_due_to_missing_evidence_A_case_study_with_skarn-type_Fe_deposits_in_Southwestern_Fujian_Province_China
- https://www.mdpi.com/2075-163X/14/5/492 ->Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China
- https://www.researchgate.net/publication/379852209_Fractal-Based_Multi-Criteria_Feature_Selection_to_Enhance_Predictive_Capability_of_AI-Driven_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/338789096_From_2D_to_3D_Modeling_of_Mineral_Prospectivity_Using_Multi-source_Geoscience_Datasets_Wulong_Gold_District_China
- https://www.researchgate.net/publication/359714254_Geochemical_characterization_of_the_Central_Mineral_Belt_U_Cu_Mo_V_mineralization_Labrador_Canada_Application_of_unsupervised_machine-learning_for_evaluation_of_IOCG_and_affiliated_mineral_potential
- https://www.researchgate.net/publication/350788828_Geochemically_Constrained_Prospectivity_Mapping_Aided_by_Unsupervised_Cluster_Analysis
- https://www.researchgate.net/publication/267927506_GIS-based_mineral_potential_modeling_by_advanced_spatial_analytical_methods_in_the_southeastern_Yunnan_mineral_district_China
- https://www.researchgate.net/publication/380190183_Geologically_Constrained_Convolutional_Neural_Network_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/332997161_GNER_A_Generative_Model_for_Geological_Named_Entity_Recognition_Without_Labeled_Data_Using_Deep_Learning
- https://www.researchgate.net/publication/307011381_Identification_and_mapping_of_geochemical_patterns_and_their_significance_for_regional_metallogeny_in_the_southern_Sanjiang_China
- https://link.springer.com/article/10.1007/s11053-024-10334-4 -> Identification of Geochemical Anomalies Using an End-to-End Transformer
- https://www.researchgate.net/publication/359627130_Identification_of_ore-finding_targets_using_the_anomaly_components_of_ore-forming_element_associations_extracted_by_SVD_and_PCA_in_the_Jiaodong_gold_cluster_area_Eastern_China
- https://www.researchgate.net/publication/282621670_Identifying_geochemical_anomalies_associated_with_Au-Cu_mineralization_using_multifractal_and_artificial_neural_network_models_in_the_Ningqiang_district_Shaanxi_China
- https://www.sciencedirect.com/science/article/abs/pii/S0375674224000943 -> Integrate physics-driven dynamics simulation with data-driven machine learning to predict potential targets in maturely explored orefields: A case study in Tongguangshan orefield, Tongling , 중국
- https://www.researchgate.net/publication/329299202_Integrating_sequential_indicator_simulation_and_singularity_analysis_to_analyze_uncertainty_of_geochemical_anomaly_for_exploration_targeting_of_tungsten_polymetallic_mineralization_Nanling_belt_South_
- https://www.sciencedirect.com/science/article/abs/pii/S0883292724001987 -> Integrating soil geochemistry and machine learning for enhanced mineral exploration at the dayu gold deposit, south China block
- https://www.mdpi.com/2071-1050/15/13/10269 -> Intelligent Identification and Prediction Mineral Resources Deposit Based on Deep Learning
- https://link.springer.com/article/10.1007/s11053-024-10396-4 -> Interpretable SHAP Model Combining Meta-learning and Vision Transformer for Lithology Classification Using Limited and Unbalanced Drilling Data in Well Logging
- https://www.researchgate.net/publication/358555996_Learning_3D_mineral_prospectivity_from_3D_geological_models_using_convolutional_neural_networks_Application_to_a_structure-controlled_hydrothermal_gold_deposit
- https://www.researchgate.net/publication/352476625_Machine_Learning-Based_3D_Modeling_of_Mineral_Prospectivity_Mapping_in_the_Anqing_Orefield_Eastern_China
- https://www.researchgate.net/publication/331575655_Mapping_Geochemical_Anomalies_Through_Integrating_Random_Forest_and_Metric_Learning_Methods
- https://www.researchgate.net/publication/229399579_Mapping_geochemical_singularity_using_multifractal_analysis_Application_to_anomaly_definition_on_stream_sediments_data_from_Funin_Sheet_Yunnan_China
- https://www.researchgate.net/publication/328255422_Mapping_mineral_prospectivity_through_big_data_analytics_and_a_deep_learning_algorithm
- https://www.researchgate.net/publication/334106787_Mapping_Mineral_Prospectivity_via_Semi-supervised_Random_Forest
- https://www.researchgate.net/publication/236270466_Mapping_of_district-scale_potential_targets_using_fractal_models
- https://www.researchgate.net/publication/357584076_Mapping_prospectivity_for_regolith-hosted_REE_deposits_via_convolutional_neural_network_with_generative_adversarial_network_augmented_data
- https://www.researchgate.net/publication/328623280_Maximum_Entropy_and_Random_Forest_Modeling_of_Mineral_Potential_Analysis_of_Gold_Prospectivity_in_the_Hezuo-Meiwu_District_West_Qinling_Orogen_China
- https://www.sciencedirect.com/science/article/pii/S016913682400163X -> Metallogenic prediction based on fractal theory and machine learning in Duobaoshan Area, Heilongjiang Province
- https://www.sciencedirect.com/science/article/pii/S0169136824003810 -> Mineral prospectivity mapping susceptibility evaluation based on interpretable ensemble learning
- https://link.springer.com/article/10.1007/s11053-024-10386-6 -> Mineral Prospectivity Mapping Based on Spatial Feature Classification with Geological Map Knowledge Graph Embedding: Case Study of Gold Ore Prediction at Wulonggou, Qinghai Provinc
- https://www.researchgate.net/publication/235443301_Mineral_potential_mapping_in_a_frontier_region
- https://www.researchgate.net/publication/235443302_Mineral_potential_mapping_in_frontier_regions_A_Mongolian_case_study
- https://www.researchgate.net/publication/369104190_Mineral_Prospectivity_Mapping_Using_Attention-based_Convolutional_Neural_Network
- https://www.nature.com/articles/s41598-024-73357-0 -> Mineral prospectivity prediction based on convolutional neural network and ensemble learning
- https://www.researchgate.net/publication/329037175_Mineral_prospectivity_analysis_for_BIF_iron_deposits_A_case_study_in_the_Anshan-Benxi_area_Liaoning_province_North-East_China
- https://link.springer.com/article/10.1007/s11053-024-10335-3 -> Mineral Prospectivity Prediction Based on Self-Supervised Contrastive Learning and Geochemical Data: A Case Study of the Gold Deposit in the Malanyu District, Hebei Province, China [USEEN]
- https://www.researchgate.net/publication/377694139_Manganese_mineral_prospectivity_based_on_deep_convolutional_neural_networks_in_Songtao_of_northeastern_Guizhou
- https://www.researchgate.net/publication/ 351649498_Mineral_Prospectivity_Mapping_based_on_Isolation_Forest_and_Random_Forest_Implication_for_the_Existence_of_Spatial_Signature_of_Mineralization_in_Outliers
- https://www.researchgate.net/publication/358528670_Mineral_Prospectivity_Mapping_Based_on_Wavelet_Neural_Network_and_Monte_Carlo_Simulations_in_the_Nanling_W-Sn_Metallogenic_Province
- https://www.researchgate.net/publication/352983697_Mineral_prospectivity_mapping_by_deep_learning_method_in_Yawan-Daqiao_area_Gansu
- https://www.researchgate.net/publication/367106018_Mineral_Prospectivity_Mapping_of_Porphyry_Copper_Deposits_Based_on_Remote_Sensing_Imagery_and_Geochemical_Data_in_the_Duolong_Ore_District_Tibet - Mineral Prospectivity Mapping of Porphyry Copper Deposits Based on Remote Sensing Imagery and Geochemical Data in the Duolong Ore District, Tibet
- https://www.researchgate.net/publication/355749736_Mineral_prospectivity_mapping_using_a_joint_singularity-based_weighting_method_and_long_short-term_memory_network
- https://www.researchgate.net/publication/369104190_Mineral_Prospectivity_Mapping_Using_Attention-based_Convolutional_Neural_Network
- https://www.researchgate.net/publication/365434839_Mineral_Prospectivity_Mapping_Using_Deep_Self-Attention_Model
- https://www.researchgate.net/publication/379674196_Mineral_prospectivity_mapping_using_knowledge_embedding_and_explainable_ensemble_learning_A_case_study_of_the_Keeryin_ore_concentration_in_Sichuan_China
- https://www.researchgate.net/publication/350817877_Mineral_Prospectivity_Prediction_via_Convolutional_Neural_Networks_Based_on_Geological_Big_Data
- https://www.researchgate.net/publication/338871759_Modeling-based_mineral_system_approach_to_prospectivity_mapping_of_stratabound_hydrothermal_deposits_A_case_study_of_MVT_Pb-Zn_deposits_in_the_Huayuan_area_northwestern_Hunan_Province_China
- https://www.sciencedirect.com/science/article/pii/S0169136824003172 -> New insights into the metallogenic genesis of the Xiadian Au deposit, Jiaodong Peninsula, Eastern China: Constraints from integrated rutile in-situ geochemical analysis and machine learning discrimination
- https://www.researchgate.net/publication/332547136_Prospectivity_Mapping_for_Porphyry_Cu-Mo_Mineralization_in_the_Eastern_Tianshan_Xinjiang_Northwestern_China
- https://www.sciencedirect.com/science/article/pii/S0169136824001823 -> Quantitative prediction methods and applications of digital ore deposit models
- https://www.researchgate.net/publication/344303914_Random-Drop_Data_Augmentation_of_Deep_Convolutional_Neural_Network_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/371044606_Supervised_Mineral_Prospectivity_Mapping_via_Class-Balanced_Focal_Loss_Function_on_Imbalanced_Geoscience_DatasetsSupervised Mineral Prospectivity Mapping via Class-Balanced Focal Loss Function on Imbalanced Geoscience Datasets
- https://www.researchgate.net/publication/361520562_Recognizing_Multivariate_Geochemical_Anomalies_Related_to_Mineralization_by_Using_Deep_Unsupervised_Graph_Learning
- https://www.sciencedirect.com/science/article/pii/S0169136824003937 -> Semi-supervised graph convolutional networks for integrating continuous and binary evidential layers for mineral exploration targeting
- https://www.researchgate.net/publication/371044606_Supervised_Mineral_Prospectivity_Mapping_via_Class-Balanced_Focal_Loss_Function_on_Imbalanced_Geoscience_Datasets
- https://www.researchgate.net/publication/360028637_Three-Dimensional_Mineral_Prospectivity_Mapping_by_XGBoost_Modeling_A_Case_Study_of_the_Lannigou_Gold_Deposit_China
- https://link.springer.com/article/10.1007/s11053-024-10387-5 - Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model
- https://www.researchgate.net/publication/361589587_Unlabeled_Sample_Selection_for_Mineral_Prospectivity_Mapping_by_Semi-supervised_Support_Vector_Machine
- https://www.researchgate.net/publication/343515866_Using_deep_variational_autoencoder_networks_for_recognizing_geochemical_anomalies
- https://link.springer.com/article/10.1007/s11004-024-10151-8 -> Using Three-dimensional Modeling and Random Forests to Predict Deep Ore Potentials: A Case Study on Xiongcun Porphyry Copper–Gold Deposit in Tibet, 중국
- https://www.researchgate.net/publication/361194407_Visual_Interpretable_Deep_Learning_Algorithm_for_Geochemical_Anomaly_Recognition
이집트
- https://www.researchgate.net/publication/340084035_Reliability_of_using_ASTER_data_in_lithologic_mapping_and_alteration_mineral_detection_of_the_basement_complex_of_West_Berenice_Southeastern_Desert_Egypt
영국
- https://www.researchgate.net/publication/342339753_A_machine_learning_approach_to_tungsten_prospectivity_modelling_using_knowledge-driven_feature_extraction_and_model_confidence
- https://www.researchgate.net/project/Enhancing-the-Geological-Understanding-of-SW-England-Using-Machine-Learning-Algorithms
에리트레아
- https://www.researchgate.net/publication/349158008_Mapping_gold_mineral_prospectivity_based_on_weights_of_evidence_method_in_southeast_Asmara_Eritrea
핀란드
- https://www.researchgate.net/publication/360661926_Target-scale_prospectivity_modeling_for_gold_mineralization_within_the_Rajapalot_Au-Co_project_area_in_northern_Fennoscandian_Shield_Finland_Part_2_Application_of_self-organizing_maps_and_artificial_n
- https://www.sciencedirect.com/science/article/pii/S0169136824004037 -> Addressing imbalanced data for machine learning based mineral prospectivity mapping
핀란드
- https://publications.csiro.au/publications/#publication/PIcsiro:EP146125/SQmineral%20prospectivity/RP1/RS50/RORECENT/STsearch-by-keyword/LISEA/RI12/RT26 -> A novel spatial analysis approach for assessing regional-scale mineral prospectivity In Northern Finland
- https://www.researchgate.net/publication/332352805_Boosting_for_Mineral_Prospectivity_Modeling_A_New_GIS_Toolbox
- https://www.researchgate.net/publication/324517415_Can_boosting_boost_minimal_invasive_exploration_targeting
- https://www.researchgate.net/publication/248955109_Combined_conceptualempirical_prospectivity_mapping_for_orogenic_gold_in_the_northern_Fennoscandian_Shield_Finland
- https://www.researchgate.net/publication/283451958_Data-driven_logistic-based_weighting_of_geochemical_and_geological_evidence_layers_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/320280611_Evaluation_of_boosting_algorithms_for_prospectivity_mapping
- https://www.researchgate.net/publication/298297988_Fuzzy_logic_data_integration_technique_used_as_a_nickel_exploration_tool
- https://www.researchgate.net/publication/259372191_Gravity_data_in_regional_scale_3D_and_gold_prospectivity_modelling_-_example_from_the_Central_Lapland_greenstone_belt_northern_Finland
- https://www.researchgate.net/publication/315381587_Introduction_to_the_special_issue_GIS-based_mineral_potential_targeting
- https://www.researchgate.net/publication/320709733_Knowledge-driven_prospectivity_model_for_Iron_oxide-Cu-Au_IOCG_deposits_in_northern_Finland
- https://tupa.gtk.fi/raportti/arkisto/57_2021.pdf -> Mineral Prospectivity and Exploration Targeting MinProXT 2021 Webinar - paper compilation
- https://tupa.gtk.fi/raportti/arkisto/29_2023.pdf -> Mineral Prospectivity and Exploration Targeting MinProXT 2022 Webinar - paper compilation
- https://www.researchgate.net/publication/312180531_Optimizing_a_Knowledge-driven_Prospectivity_Model_for_Gold_Deposits_Within_Perapohja_Belt_Northern_Finland
- https://www.researchgate.net/publication/320703774_Prospectivity_Models_for_Volcanogenic_Massive_Sulfide_Deposits_VMS_in_Northern_Finland
- https://www.researchgate.net/publication/280875727_Receiver_operating_characteristics_ROC_as_validation_tool_for_prospectivity_models_-_A_magmatic_Ni-Cu_case_study_from_the_Central_Lapland_Greenstone_Belt_Northern_Finland
- https://www.researchgate.net/publication/332298116_Scalability_of_the_Mineral_Prospectivity_Modelling_-_An_orogenic_gold_case_study_from_northern_Finland
- https://www.researchgate.net/publication/251786465_Spatial_data_analysis_as_a_tool_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/331006924_Unsupervised_clustering_and_empirical_fuzzy_memberships_for_mineral_prospectivity_modelling
가나
- https://www.researchgate.net/publication/227256267_Application_of_Data-Driven_Evidential_Belief_Functions_to_Prospectivity_Mapping_for_Aquamarine-Bearing_Pegmatites_Lundazi_District_Zambia
- https://www.researchgate.net/publication/226842511_Mapping_of_prospectivity_and_estimation_of_number_of_undiscovered_prospects_for_lode_gold_southwestern_Ashanti_Belt_Ghana
- https://www.researchgate.net/publication/233791624_Spatial_association_of_gold_deposits_with_remotely_-_sensed_faults_South_Ashanti_belt_Ghana
그린란드
- https://www.researchgate.net/publication/360970965_Identification_of_Radioactive_Mineralized_Lithology_and_Mineral_Prospectivity_Mapping_Based_on_Remote_Sensing_in_High-Latitude_Regions_A_Case_Study_on_the_Narsaq_Region_of_Greenland
인도
- https://www.researchgate.net/publication/372636338_Unsupervised_machine_learning_based_prospectivity_analysis_of_NW_and_NE_India_for_carbonatite-alkaline_complex-related_REE_deposits
인도네시아 공화국
- https://www.researchgate.net/publication/263542819_Regional-Scale_Geothermal_Prospectivity_Mapping_in_West_Java_Indonesia_by_Data-driven_Evidential_Belief_Functions
이란
- https://www.researchgate.net/publication/325697373_A_comparative_analysis_of_artificial_neural_network_ANN_wavelet_neural_network_WNN_and_support_vector_machine_SVM_data-driven_models_to_mineral_potential_mapping_for_copper_mineralizations_in_the_Shah
- https://www.researchgate.net/publication/358507255_A_Comparative_Study_of_Convolutional_Neural_Networks_and_Conventional_Machine_Learning_Models_for_Lithological_Mapping_Using_Remote_Sensing_Data
- https://www.researchgate.net/publication/351750324_A_data_augmentation_approach_to_XGboost-based_mineral_potential_mapping_An_example_of_carbonate-hosted_Zn_Pb_mineral_systems_of_Western_Iran
- https://www.researchgate.net/publication/336471932_A_knowledge-guided_fuzzy_inference_approach_for_integrating_geophysics_geochemistry_and_geology_data_in_deposit-scale_porphyry_copper_targeting_Saveh-Iran
- https://www.researchgate.net/publication/348500913_A_new_strategy_for_spatial_predictive_mapping_of_mineral_prospectivity
- https://www.researchgate.net/publication/348482539_A_new_strategy_for_spatial_predictive_mapping_of_mineral_prospectivity_Automated_hyperparameter_tuning_of_random_forest_approach
- https://www.researchgate.net/publication/352251016_A_simulation-based_framework_for_modulating_the_effects_of_subjectivity_in_greenfield_Mineral_Prospectivity_Mapping_with_geochemical_and_geological_data
- https://www.researchgate.net/publication/296638839_An_AHP-TOPSIS_Predictive_Model_for_District-Scale_Mapping_of_Porphyry_Cu-Au_Potential_A_Case_Study_from_Salafchegan_Area_Central_Iran
- https://www.researchgate.net/publication/278029106_Application_of_Discriminant_Analysis_and_Support_Vector_Machine_in_Mapping_Gold_Potential_Areas_for_Further_Drilling_in_the_Sari-Gunay_Gold_Deposit_NW_Iran
- https://www.researchgate.net/publication/220164381_Application_of_geochemical_zonality_coefficients_in_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/330359897_Application_of_hybrid_AHP-TOPSIS_method_for_prospectivity_modeling_of_Cu_porphyry_in_Varzaghan_district_Iran
- https://www.researchgate.net/publication/356872819_Application_of_self-organizing_map_SOM_and_K-means_clustering_algorithms_for_portraying_geochemical_anomaly_patterns_in_Moalleman_district_NE_Iran
- https://www.researchgate.net/publication/258505300_Application_of_staged_factor_analysis_and_logistic_function_to_create_a_fuzzy_stream_sediment_geochemical_evidence_layer_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/358567148_Applications_of_data_augmentation_in_mineral_prospectivity_prediction_based_on_convolutional_neural_networks
- https://www.researchgate.net/publication/353761696_Assessing_the_effects_of_mineral_systems-derived_exploration_targeting_criteria_for_Random_Forests-based_predictive_mapping_of_mineral_prospectivity_in_Ahar-Arasbaran_area_Iran
- https://www.researchgate.net/publication/270586282_Data-Driven_Index_Overlay_and_Boolean_Logic_Mineral_Prospectivity_Modeling_in_Greenfields_Exploration
- https://www.researchgate.net/publication/356660905_Deep_GMDH_Neural_Networks_for_Predictive_Mapping_of_Mineral_Prospectivity_in_Terrains_Hosting_Few_but_Large_Mineral_Deposits
- https://www.researchgate.net/publication/317240761_Enhancement_and_Mapping_of_Weak_Multivariate_Stream_Sediment_Geochemical_Anomalies_in_Ahar_Area_NW_Iran
- https://www.sciencedirect.com/science/article/pii/S0009281924001223 -> Enhancing training performance of convolutional neural network algorithm through an autoencoder-based unsupervised labeling framework for mineral exploration targeting
- https://www.researchgate.net/publication/356580903_Evidential_data_integration_to_produce_porphyry_Cu_prospectivity_map_using_a_combination_of_knowledge_and_data_driven_methods
- https://research-repository.uwa.edu.au/en/publications/exploration-feature-selection-applied-to-hybrid-data-integration-Exploration feature selection applied to hybrid data integrationmodeling: Targeting copper-gold potential in central
- https://www.researchgate.net/publication/333199619_Incorporation_of_principal_component_analysis_geostatistical_interpolation_approaches_and_frequency-space-based_models_for_portraying_the_Cu-Au_geochemical_prospects_in_the_Feizabad_district_NW_Iran
- https://www.researchgate.net/publication/351965039_Intelligent_geochemical_exploration_modeling_using_multiclass_support_vector_machine_and_integration_it_with_continuous_genetic_algorithm_in_Gonabad_region_Khorasan_Razavi_Iran
- https://www.researchgate.net/publication/310658663_Multifractal_interpolation_and_spectrum-area_fractal_modeling_of_stream_sediment_geochemical_data_Implications_for_mapping_exploration_targets
- https://www.researchgate.net/publication/267635150_Multivariate_regression_analysis_of_lithogeochemical_data_to_model_subsurface_mineralization_A_case_study_from_the_Sari_Gunay_epithermal_gold_deposit_NW_Iran
- https://www.researchgate.net/publication/330129457_Performance_evaluation_of_RBF-_and_SVM-based_machine_learning_algorithms_for_predictive_mineral_prospectivity_modeling_integration_of_S-A_multifractal_model_and_mineralization_controls
- https://www.researchgate.net/publication/353982380_Porphyry_Cu-Au_prospectivity_modelling_using_semi-supervised_learning_algorithm_in_Dehsalm_district_eastern_Iran_In_Farsi_with_extended_English_abstract
- https://www.researchgate.net/publication/320886789_Prospectivity_analysis_of_orogenic_gold_deposits_in_Saqez-Sardasht_Goldfield_Zagros_Orogen_Iran
- https://www.researchgate.net/publication/361529867_Prospectivity_mapping_of_orogenic_lode_gold_deposits_using_fuzzy_models_a_case_study_of_Saqqez_area_NW_of_Iran
- https://www.researchgate.net/publication/361717490_Quantifying_Uncertainties_Linked_to_the_Diversity_of_Mathematical_Frameworks_in_Knowledge-Driven_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/374730424_Recognition_of_mineralization-related_anomaly_patterns_through_an_autoencoder_neural_network_for_mineral_exploration_targeting
- https://www.researchgate.net/publication/349957803_Regional-Scale_Mineral_Prospectivity_Mapping_Support_Vector_Machines_and_an_Improved_Data-Driven_Multi-criteria_Decision-Making_Technique
- https://www.researchgate.net/publication/339153591_Sensitivity_analysis_of_prospectivity_modeling_to_evidence_maps_Enhancing_success_of_targeting_for_epithermal_gold_Takab_district_NW_Iran
- https://www.researchgate.net/publication/321076980_Spatial_analyses_of_exploration_evidence_data_to_model_skarn-type_copper_prospectivity_in_the_Varzaghan_district_NW_Iran
- https://www.researchgate.net/publication/304904242_Stepwise_regression_for_recognition_of_geochemical_anomalies_Case_study_in_Takab_area_NW_Iran
- https://www.researchgate.net/publication/350423220_Supervised_mineral_exploration_targeting_and_the_challenges_with_the_selection_of_deposit_and_non-deposit_sites_thereof
- https://www.sciencedirect.com/science/article/pii/S0009281924000801 -> Targeting porphyry Cu deposits in the Chahargonbad region of Iran: A joint application of deep belief networks and random forest techniques
- https://www.researchgate.net/publication/307874730_The_use_of_decision_tree_induction_and_artificial_neural_networks_for_recognizing_the_geochemical_distribution_patterns_of_LREE_in_the_Choghart_deposit_Central_Iran
- https://www.researchsquare.com/article/rs-4760956/v1 -> Uncertainty reduction with Hyperparameter Optimization in mineral prospectivity mapping: A Regularized Artificial Neural Network approach [UNSEEN]
아일랜드
- https://www.gsi.ie/en-ie/programmes-and-projects/tellus/activities/tellus-product-development/mineral-prospectivity/Pages/default.aspx - > NW Midlands Mineral Prospectivity Mapping
인도
- https://www.researchgate.net/publication/226092981_A_Hybrid_Neuro-Fuzzy_Model_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/225328359_A_Hybrid_Fuzzy_Weights-of-Evidence_Model_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/227221497_Artificial_Neural_Networks_for_Mineral-Potential_Mapping_A_Case_Study_from_Aravalli_Province_Western_India
- https://www.researchgate.net/publication/222050039_Bayesian_network_classifiers_for_mineral_potential_mapping
- https://www.researchgate.net/publication/355397149_Gold_Prospectivity_Mapping_in_the_Sonakhan_Greenstone_Belt_Central_India_A_Knowledge-Driven_Guide_for_Target_Delineation_in_a_Region_of_Low_Exploration_Maturity
- https://www.researchgate.net/publication/272092276_Extended_Weights-of-Evidence_Modelling_for_Predictive_Mapping_of_Base_Metal_Deposit_Potential_in_Aravalli_Province_Western_India
- https://www.researchgate.net/publication/226193283_Knowledge-Driven_and_Data-Driven_Fuzzy_Models_for_Predictive_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/238027981_SVM-based_base-metal_prospectivity_modeling_of_the_Aravalli_Orogen_Northwestern_India
한국
- https://www.researchgate.net/publication/382131746_Domain_Adaptation_from_Drilling_to_Geophysical_Data_for_Mineral_Exploration
노르웨이
- https://www.mdpi.com/2075-163X/9/2/131/htm - Prospectivity Mapping of Mineral Deposits in Northern Norway Using Radial Basis Function Neural Networks
대한민국
- https://www.researchgate.net/publication/221911782_Application_of_Artificial_Neural_Network_for_Mineral_Potential_Mapping
- https://www.researchgate.net/publication/359861043_Rock_Classification_in_a_Vanadiferous_Titanomagnetite_Deposit_Based_on_Supervised_Machine_Learning#fullTextFileContent Rock Classification in a Vanadiferous Titanomagnetite Deposit Based on Supervised Machine Learning
Phillipines
- https://www.researchgate.net/publication/359632307_A_Geologically_Constrained_Variational_Autoencoder_for_Mineral_Prospectivity_Mapping
- https://www.researchgate.net/publication/263174923_Application_of_Mineral_Exploration_Models_and_GIS_to_Generate_Mineral_Potential_Maps_as_Input_for_Optimum_Land-Use_Planning_in_the_Philippines
- https://www.researchgate.net/publication/267927677_Data-driven_predictive_mapping_of_gold_prospectivity_Baguio_district_Philippines_Application_of_Random_Forests_algorithm
- https://www.researchgate.net/publication/276271833_Data-Driven_Predictive_Modeling_of_Mineral_Prospectivity_Using_Random_Forests_A_Case_Study_in_Catanduanes_Island_Philippines
- https://www.researchgate.net/publication/209803275_Evidential_belief_functions_for_data-driven_geologically_constrained_mapping_of_gold_potential_Baguio_district_Philippines
- https://www.researchgate.net/publication/241001432_Geologically_Constrained_Probabilistic_Mapping_of_Gold_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/263724277_Geologically_Constrained_Fuzzy_Mapping_of_Gold_Mineralization_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/229641286_Improved_Wildcat_Modelling_of_Mineral_Prospectivity
- https://www.researchgate.net/publication/238447208_Logistic_Regression_for_Geologically_Constrained_Mapping_of_Gold_Potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/248977334_Mineral_imaging_with_Landsat_TM_data_for_hydrothermal_alteration_mapping_in_heavily-vegetated_terrane
- https://www.researchgate.net/publication/356546133_Mineral_Prospectivity_Mapping_via_Gated_Recurrent_Unit_Model
- https://www.researchgate.net/publication/267640864_Random_forest_predictive_modeling_of_mineral_prospectivity_with_small_number_of_prospects_and_data_with_missing_values_in_Abra_Philippines
- https://www.researchgate.net/publication/3931975_Remote_detection_of_vegetation_stress_for_mineral_exploration
- https://www.researchgate.net/publication/263422015_Where_Are_Porphyry_Copper_Deposits_Spatially_Localized_A_Case_Study_in_Benguet_Province_Philippines
- https://www.researchgate.net/publication/233488614_Wildcat_mapping_of_gold_potential_Baguio_District_Philippines
- https://www.researchgate.net/publication/226982180_Weights_of_Evidence_Modeling_of_Mineral_Potential_A_Case_Study_Using_Small_Number_of_Prospects_Abra_Philippines
러시아 제국
- https://www.researchgate.net/publication/358431343_Application_of_Maximum_Entropy_for_Mineral_Prospectivity_Mapping_in_Heavily_Vegetated_Areas_of_Greater_Kurile_Chain_with_Landsat_8_Data
- https://www.researchgate.net/publication/354000754_Mineral_Prospectivity_Mapping_for_Forecasting_Gold_Deposits_in_the_Central_Kolyma_Region_North-East_Russia
남아프리카공화국
- https://www.researchgate.net/publication/359294267_Data-driven_multi-index_overlay_gold_prospectivity_mapping_using_geophysical_and_remote_sensing_datasets
- https://link.springer.com/article/10.1007/s11053-024-10390-w -> Mineral Reconnaissance Through Scientific Consensus: First National Prospectivity Maps for PGE–Ni–Cu–Cr and Witwatersrand-type Au Deposits in South Africa
- https://www.researchgate.net/publication/361526053_Mineral_prospectivity_mapping_of_gold-base_metal_mineralisation_in_the_Sabie-Pilgrim%27s_Rest_area_Mpumalanga_Province_South_Africa
- https://www.researchgate.net/publication/264296137_PREDICTIVE_BEDROCK_AND_MINERAL_PROSPECTIVITY_MAPPING_IN_THE_GIYANI_GREENSTONE_BELT_SOUTH_AFRICA
- https://www.researchgate.net/publication/268196204_Predictive_mapping_of_prospectivity_for_orogenic_gold_Giyani_greenstone_belt_South_Africa
스페인
- https://www.researchgate.net/publication/225656353_Deriving_Optimal_Exploration_Target_Zones_on_Mineral_Prospectivity_Maps
- https://www.researchgate.net/publication/222198648_Knowledge-guided_data-driven_evidential_belief_modeling_of_mineral_prospectivity_in_Cabo_de_Gata_SE_Spain
- https://www.researchgate.net/publication/356639977_Machine_learning_models_for_Hg_prospecting_in_the_Almaden_mining_district
- https://www.researchgate.net/publication/43165602_Methodology_for_deriving_optimal_exploration_target_zones
- https://www.researchgate.net/publication/263542579_Optimal_Exploration_Target_Zones
- https://www.researchgate.net/publication/222892103_Optimal_field_sampling_for_targeting_minerals_using_hyperspectral_data
- https://www.researchgate.net/publication/271671416_Predictive_modelling_of_gold_potential_with_the_integration_of_multisource_information_based_on_random_forest_a_case_study_on_the_Rodalquilar_area_Southern_Spain
수단
- https://link.springer.com/article/10.1007/s11053-024-10387-5 -> Toward Data-Driven Mineral Prospectivity Mapping from Remote Sensing Data Using Deep Forest Predictive Model [UNSEEN]
스웨덴
- https://www.researchgate.net/publication/259128115_Biogeochemical_expression_of_rare_earth_element_and_zirconium_mineralization_at_Norra_Karr_Southern_Sweden
- https://www.researchgate.net/publication/260086862_COMPARISION_OF_VMS_PROSPECTIVITY_MAPPING_BY_EBF_AND_WOFE_MODELING_THE_SKELLEFTE_DISTRICT_SWEDEN
- https://www.researchgate.net/publication/336086368_GIS-based_mineral_system_approach_for_prospectivity_mapping_of_iron-oxide_apatite-bearing_mineralisation_in_Bergslagen_Sweden
- https://www.researchgate.net/publication/229347041_Predictive_mapping_of_prospectivity_and_quantitative_estimation_of_undiscovered_VMS_deposits_in_Skellefte_district_Sweden
- https://www.researchgate.net/publication/260086947_PRELIMINARY_GIS-BASED_ANALYSIS_OF_REGIONAL-SCALE_VMS_PROSPECTIVITY_IN_THE_SKELLEFTE_REGION_SWEDEN
탄자니아
- https://www.sciencedirect.com/science/article/pii/S2666261224000270 -> Machine learning based prospect targeting: A case of gold occurrence in central parts of Tanzania, East Africa
우간다
- https://www.researchgate.net/publication/242339962_Predictive_mapping_for_orogenic_gold_prospectivity_in_Uganda
- https://www.researchgate.net/publication/262566098_Predictive_Mapping_of_Prospectivity_for_Orogenic_Gold_in_Uganda
- https://www.researchgate.net/publication/381219015_Machine_Learning_Application_in_Predictive_Mineral_Mapping_of_Southwestern_Uganda_Leveraging_Airborne_Magnetic_Radiometric_and_Electromagnetic_Data
영국
- https://www.researchgate.net/publication/383580839_Improved_mineral_prospectivity_mapping_using_graph_neural_networks
미국
- https://www.researchgate.net/publication/338663292_A_Predictive_Geospatial_Exploration_Model_for_Mississippi_Valley_Type_Pb-Zn_Mineralization_in_the_Southeast_Missouri_Lead_District
- https://www.sciencedirect.com/science/article/abs/pii/S0375674218300396?via%3Dihub -> Machine learning strategies for classification and prediction of alteration facies: Examples from the Rosemont Cu-Mo-Ag skarn deposit, SE Tucson 애리조나
- [presentation of the above!] https://www.slideshare.net/JuanCarlosOrdezCalde/geology-chemostratigraphy-and-alteration-geochemistry-of-the-rosemont-cumoag-skarn-deposit-southern-arizona
- https://github.com/rohitash-chandra/research/blob/master/presentations/CSIRO%20Minerals-Seminar-September2022.pdf -> Machine Learning for Mineral Exploration: A Data Odyssey
- Video https://www.youtube.com/watch?v=zhXuPQy7mk8&t=561s -> Talks about using plate subduction and associated statistics via GPlates
잠비아
- https://www.researchgate.net/publication/263542565_APPLICATION_OF_REMOTE_SENSING_AND_SPATIAL_DATA_INTEGRATION_TO_PREDICT_POTENTIAL_ZONES_FOR_AQUAMARINE-BEARING_PEGMATITES_LUNDAZI_AREA_NORTHEAST_ZAMBIA
- https://www.researchgate.net/publication/264041472_Geological_and_Mineral_Potential_Mapping_by_Geoscience_Data_Integration
짐바브웨
- https://www.researchgate.net/publication/260792212_Nickel_Sulphide_Deposits_in_Archaean_Greenstone_Belts_in_Zimbabwe_Review_and_Prospectivity_Analysis
GENERAL PAPERS
Overviews
- https://www.sciencedirect.com/science/article/pii/S2772883824000347 -> A review on the applications of airborne geophysical and remote sensing datasets in epithermal gold mineralisation mapping
- https://www.researchgate.net/publication/353530416_A_Systematic_Review_on_the_Application_of_Machine_Learning_in_Exploiting_Mineralogical_Data_in_Mining_and_Mineral_Industry
- https://www.researchgate.net/publication/365777421_Computer_Vision_and_Pattern_Recognition_for_the_Analysis_of_2D3D_Remote_Sensing_Data_in_Geoscience_A_Survey - Computer Vision and Pattern Recognition for the Analysis of 2D/3D Remote Sensing Data in Geoscience: A Survey
- https://www.researchgate.net/publication/352104303_Deep_Learning_for_Geophysics_Current_and_Future_Trends
- https://www.proquest.com/openview/e7bec6c8ee50183b5049516b000d4f5c/1?pq-origsite=gscholar&cbl=18750&diss=y -> Probabilistic Knowledge-Guided Machine Learning in Engineering and Geoscience Systems
- KGMLPrescribedFires repository for one paper / part of above dissertation
매장
- https://pubs.er.usgs.gov/publication/ofr20211049 -> Deposit Classification Scheme for the Critical Minerals Mapping Initiative Global Geochemical Database
ESG
- https://www.escubed.org/journals/earth-science-systems-and-society/articles/10.3389/esss.2024.10109/full -> Geospatial Data and Deep Learning Expose ESG Risks to Critical Raw Materials Supply: The Case of 리튬
Geochemistry
Causal Discovery and Deep Learning Algorithms for Detecting Geochemical Patterns Associated with Gold-Polymetallic Mineralization: A Case Study of the Edongnan Region
- https://link.springer.com/article/10.1007/s11053-024-10408-3 -> A New Sphalerite Thermometer Based on Machine Learning with Trace Element Geochemistry
- https://www.researchgate.net/publication/378150628_A_SMOTified_extreme_learning_machine_for_identifying_mineralization_anomalies_from_geochemical_exploration_data_a_case_study_from_the_Yeniugou_area_Xinjiang_China A SMOTified extreme learning machine for identifying mineralization anomalies from geochemical exploration data
- https://ui.adsabs.harvard.edu/abs/2018EGUGA..20.4169R/abstract -> Accelerating minerals exploration with in-field characterisation, sample tracking and active machine learning
- https://www.researchgate.net/publication/375509344_Alteration_assemblage_characterization_using_machine_learning_applied_to_high_resolution_drill-core_images_hyperspectral_data_and_geochemistry
- https://qspace.library.queensu.ca/items/38f52d19-609d-4916-bcd0-3ce20675dee3/full - > Application of Computational Methods to Data Integration and Geoscientific Problems in Mineral Exploration and Mining
- https://www.sciencedirect.com/science/article/pii/S0169136822005509?dgcid=rss_sd_all -> Applying neural networks-based modelling to the prediction of mineralization: A case-study using the Western Australian Geochemistry (WACHEM) database
- https://www.sciencedirect.com/science/article/pii/S0169136824002099 -> Development of a machine learning model to classify mineral deposits using sphalerite chemistry and mineral assemblages
- https://www.sciencedirect.com/science/article/pii/S0169136824002403 -> Discrimination of deposit types using magnetite geochemistry based on machine learning
- https://www.researchgate.net/publication/302595237_A_machine_learning_approach_to_geochemical_mapping
- https://www.researchgate.net/publication/369300132_DEEP-LEARNING_IDENTIFICATION_OF_ANOMALOUS_DATA_IN_GEOCHEMICAL_DATASETS_DEEP-LEARNING_IDENTIFICATION_OF_ANOMALOUS_DATA_IN_GEOCHEMICAL_DATASETS
- https://www.researchgate.net/publication/378549920_Denoising_of_geochemical_data_using_deep_learning-Implications_for_regional_surveys -> Denoising of Geochemical Data using Deep Learning–Implications for Regional Surveys]
- https://www.researchgate.net/publication/368489689_Discrimination_of_Pb-Zn_deposit_types_using_sphalerite_geochemistry_New_insights_from_machine_learning_algorithm
- https://www.researchgate.net/publication/381369176_Effectiveness_of_LOF_iForest_and_OCSVM_in_detecting_anomalies_in_stream_sediment_geochemical_data#:~:text=LOF%20outperformed%20iForest%20and%20OCSVM,patterns%20in%20the%20iForest%20map
- https://dzkjqb.cug.edu.cn/en/article/doi/10.19509/j.cnki.dzkq.tb20220423 -> Gaussian mixture model in geochemical anomaly delineation of stream sediments: A case study of Xupu, Hunan Province [UNSEEN ]
- https://www.sciencedirect.com/science/article/pii/S0883292724002427 -> Geologically constrained unsupervised dual-branch deep learning algorithm for geochemical anomalies identification
- https://www.researchgate.net/publication/365953549_Incorporating_the_genetic_and_firefly_optimization_algorithms_into_K-means_clustering_method_for_detection_of_porphyry_and_skarn_Cu-related_geochemical_footprints_in_Baft_district_Kerman_Iran
- https://www.researchgate.net/publication/369768936_Infomax-based_deep_autoencoder_network_for_recognition_of_multi-element_geochemical_anomalies_linked_to_mineralization -> Paywalled
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424001626 -> Local phase-constrained convolutional autoencoder network for identifying multivariate geochemical anomalies
- https://www.researchgate.net/publication/354564681_Machine_Learning_for_Identification_of_Primary_Water_Concentrations_in_Mantle_Pyroxene
- https://www.researchgate.net/publication/366210211_Machine_Learning_Prediction_of_Ore_Deposit_Genetic_Type_Using_Magnetite_Geochemistry
- https://link.springer.com/article/10.1007/s42461-024-01013-2 -> NIR-Spectroscopy and Machine Learning Models to Pre-concentrate Copper Hosted Within Sedimentary Rocks[UNSEEN]
- https://www.researchsquare.com/article/rs-4106957/v1 -> Multi-element geochemical anomaly recognition applying geologically-constrained convolutional deep learning algorithm with Butterworth filtering
- https://www.researchgate.net/publication/369241349_Quantifying_continental_crust_thickness_using_the_machine_learning_method
- https://link.springer.com/article/10.1007/s11004-024-10158-1 -> Spatial-Spectrum Two-Branch Model Based on a Superpixel Graph Convolutional Network and 1DCNN for Geochemical Anomaly Identification
- https://www.researchgate.net/publication/334651800_Using_machine_learning_to_estimate_a_key_missing_geochemical_variable_in_mining_exploration_Application_of_the_Random_Forest_algorithm_to_multi-sensor_core_logging_data
인회석
- https://www.researchgate.net/publication/377892369_Apatite_trace_element_composition_as_an_indicator_of_ore_deposit_types_A_machine_learning_approachApatite trace element composition as an indicator of ore deposit types: A machine learning approach
- https://www.researchgate.net/publication/369729999_Visual_Interpretation_of_Machine_Learning_Genetical_Classification_of_Apatite_from_Various_Ore_Sources
지질학
변경
- https://ieeexplore.ieee.org/abstract/document/10544529 -> Remote sensing data processing using convolutional neural networks for mapping alteration zones [UNSEEN]
깊이
- https://www.researchgate.net/publication/332263305_A_speedy_update_on_machine_learning_applied_to_bedrock_mapping_using_geochemistry_or_geophysics_examples_from_the_Pacific_Rim_and_nearby
- https://eprints.utas.edu.au/32368/ - thesis paper update
- https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2024.1407173/full -> Deep learning for geological mapping in the overburden area
- https://www.researchgate.net/publication/280038632_Estimating_the_fill_thickness_and_bedrock_topography_in_intermontane_valleys_using_artificial_neural_networks_-_Supporting_Information
- https://www.researchgate.net/publication/311783770_Mapping_the_global_depth_to_bedrock_for_land_surface_modeling
- https://www.researchgate.net/publication/379813337_Contribution_to_advancing_aquifer_geometric_mapping_using_machine_learning_and_deep_learning_techniques_a_case_study_of_the_AL_Haouz-Mejjate_aquifer_Marrakech_Morocco
- https://www.linkedin.com/pulse/depth-basement-modelling-machine-learning-perspective-n5gyc/?trackingId=qFSktvVPUiSa2V2nlmXVoQ%3D%3D
Drill Core
- https://pubmed.ncbi.nlm.nih.gov/35776744/ - Deep learning based lithology classification of drill core images
- https://www.researchgate.net/publication/381445417_Machine_Learning_for_Lithology_Analysis_using_a_Multi-Modal_Approach_of_Integrating_XRF_and_XCT_data
- https://www.researchgate.net/publication/379760986_A_machine_vision_approach_for_detecting_changes_in_drill_core_textures_using_optical_images
- https://www.sciencedirect.com/science/article/pii/S2949891024002112 -> Sensitivity analysis of similarity learning models for well-intervals based on logging data
- https://www.sciencedirect.com/science/article/pii/S2949891024003828 -> CoreViT: a new vision transformer model for lithology identification in cores
일반적인
- https://www.sciencedirect.com/science/article/pii/S0034425724002323 -> Deep learning-based geological map generation using geological routes
- https://www.researchgate.net/publication/354781583_Deep_learning_framework_for_geological_symbol_detection_on_geological_maps
- https://www.researchgate.net/publication/335104674_Does_shallow_geological_knowledge_help_neural-networks_to_predict_deep_units
- https://www.researchgate.net/publication/379939974_Graph_convolutional_network_for_lithological_classification_and_mapping_using_stream_sediment_geochemical_data_and_geophysical_data
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424001493-> FlexLogNet: A flexible deep learning-based well-log completion method of adaptively using what you have to predict what you are missing
- https://ieeexplore.ieee.org/abstract/document/10493129 -> Geological Background Prototype Learning Enhanced Network for Remote Sensing-Based Engineering Geological Lithology Interpretation in Highly Vegetated Areas [Unseen]
- https://www.sciencedirect.com/science/article/pii/S2096249524000619 -> Generating extremely low-dimensional representation of subsurface earth models using vector quantization and deep Autoencoder
- https://www.researchgate.net/publication/370175012_GeoPDNN_A_Semisupervised_Deep_Learning_Neural_Network_Using_Pseudolabels_for_Three-dimensional_Urban_Geological_Modelling_and_Uncertainty_Analysis_from_Borehole_Data
- https://www.researchsquare.com/article/rs-4805227/v1 -> Synergizing AI with Geology: Exploring VisionTransformers for Rock Classification
- https://www.researchgate.net/publication/343511849_Identification_of_intrusive_lithologies_in_volcanic_terrains_in_British_Columbia_by_machine_learning_using_Random_Forests_the_value_of_using_a_soft_classifier
- https://www.sciencedirect.com/science/article/pii/S0169136824000921 -> Machine learning-based field geological mapping: A new exploration of geological survey data acquisition strategy https://www.researchgate.net/publication/324411647_Predicting_rock_type_and_detecting_hydrothermal_alteration_using_machine_learning_and_petrophysical_properties_of_the_Canadian_Malartic_ore_and_host_rocks_Pontiac_Subprovince_Quebec_Canada
- https://www.sciencedirect.com/science/article/abs/pii/S0895981124001743 -> Utilizing Random Forest algorithm for identifying mafic and ultramafic rocks in the Gameleira Suite, Archean-Paleoproterozoic basement of the Brasília Belt, Brazil
- https://arxiv.org/pdf/2407.18100 -> DINOv2 Rocks Geological Image Analysis: Classification,
Geochronology
- https://www.researchgate.net/publication/379077847_Tracing_Andean_Origins_A_Machine_Learning_Framework_for_Lead_Isotopes
Geomorphology
- https://agu.confex.com/agu/fm18/mediafile/Handout/Paper427843/Landforms%20Poster.pdf -> Using machine learning to classify landforms for minerals exploration
- https://www.tandfonline.com/doi/abs/10.1080/13658816.2024.2414409 -> GeomorPM: a geomorphic pretrained model integrating convolution and Transformer architectures based on DEM data
Lithology
- https://link.springer.com/article/10.1007/s11053-024-10396-4 -> Interpretable SHAP Model Combining Meta-learning and Vision Transformer for Lithology Classification Using Limited and Unbalanced Drilling Data in Well Logging [UNSEN]
- https://www.nature.com/articles/s41598-024-66199-3 -> Machine learning and remote sensing-based lithological mapping of the Duwi Shear-Belt area, Central Eastern Desert, Egypt
- https://link.springer.com/article/10.1007/s11053-024-10375-9 - SsL-VGMM: A Semisupervised Machine Learning Model of Multisource Data Fusion for Lithology Prediction [UNSEEN]
- https://www.researchgate.net/publication/380719080_An_integrated_machine_learning_framework_with_uncertainty_quantification_for_three-dimensional_lithological_modeling_from_multi-source_geophysical_data_and_drilling_data
- https://www.bio-conferences.org/articles/bioconf/pdf/2024/34/bioconf_rena23_01005.pdf -> Lithological Mapping using Artificial Intelligence and Remote Sensing data: A Case Study of Bab Boudir region Morocco
광물학
- https://pubs.geoscienceworld.org/msa/ammin/article-abstract/doi/10.2138/am-2023-9092/636861/The-application-of-transfer-learning-in-optical -> The application of “transfer learning” in optical microscopy: the petrographic classification of metallic minerals
- https://www.researchgate.net/publication/385074584_Deep_Learning-Based_Mineral_Classification_Using_Pre-Trained_VGG16_Model_with_Data_Augmentation_Challenges_and_Future_Directions
Stratigraphy
- https://www.researchgate.net/publication/335486001_A_Stratigraphic_Prediction_Method_Based_on_Machine_Learning
- https://www.researchgate.net/publication/346641320_Classifying_basin-scale_stratigraphic_geometries_from_subsurface_formation_tops_with_machine_learning
구조
- https://www.sciencedirect.com/science/article/pii/S0098300421000285 -> A machine learning model for structural trend fields
- https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2478.13589 -> Inferring fault structures and overburden depth in 3D from geophysical data using machine learning algorithms – A case study on the Fenelon gold deposit, Quebec, Canada
- https://www.sciencedirect.com/science/article/pii/S019181412400138X -> Mapping paleostress trajectories by means of the clustering of reduced stress tensors determined from homogeneous and heterogeneous data sets
- https://www.researchgate.net/publication/332267249_Seismic_fault_detection_using_an_encoder-decoder_convolutional_neural_network_with_a_small_training_set
- https://www.researchgate.net/publication/377168034_Unsupervised_machine_learning_and_depth_clusters_of_Euler_deconvolution_of_magnetic_data_a_new_approach_to_imaging_geological_structures
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae226/7701418 -> Use of Decision Tree Ensembles for Crustal Structure Imaging from Receiver Functions
건축
- https://www.researchgate.net/publication/371594975_Assessing_plate_reconstruction_models_using_plate_driving_force_consistency_tests
- https://www.researchgate.net/publication/333182666_Decoding_Earth's_plate_tectonic_history_using_sparse_geochemical_data
- https://www.researchgate.net/publication/376519740_Machine_learning_and_tectonic_setting_determination_Bridging_the_gap_between_Earth_scientists_and_data_scientists
- https://pubs.geoscienceworld.org/gsa/geology/article-abstract/doi/10.1130/G52466.1/648458/Prediction-of-CO2-content-in-mid-ocean-ridge -> Prediction of CO2 content in mid-ocean ridge basalts via a machine learning approach
Geophysics
기반
- https://www.researchgate.net/publication/373714604_Seismic_Foundation_Model_SFM_a_new_generation_deep_learning_model_in_geophysics
일반적인
- https://essopenarchive.org/users/841077/articles/1231187-bayesian-inference-in-geophysics-with-ai-enhanced-markov-chain-monte-carlo -> Bayesian Inference in Geophysics with AI-enhanced Markov chain Monte Carlo
- https://www.researchgate.net/publication/353789276_Geology_differentiation_by_applying_unsupervised_machine_learning_to_multiple_independent_geophysical_inversions
- https://www.sciencedirect.com/science/article/pii/S001379522100137X - Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain)
- https://www.sciencedirect.com/science/article/pii/S2666544121000253 - Microleveling aerogeophysical data using deep convolutional network and MoG-RPCA
- https://www.researchgate.net/publication/368550674_Objective_classification_of_high-resolution_geophysical_data_Empowering_the_next_generation_of_mineral_exploration_in_Sierra_Leone
- https://datarock.com.au/blog/transfer-learning-with-seismic-attributes -> Transfer Learning with Seismic Attributes
Potential Fields
- https://api.research-repository.uwa.edu.au/ws/portalfiles/portal/390212334/THESIS_-_DOCTOR_OF_PHILOSOPHY_-_SMITH_Luke_Thomas_-_2023_.pdf -> Potential Field Geophysics Enhancement Using Conteporary Deep Learning
여자 이름
- https://d197for5662m48.cloudfront.net/documents/publicationstatus/206704/preprint_pdf/59681a0a2c571bc2a9006f37517bc6ef.pdf -> A Fast Three-dimensional Imaging Scheme of Airborne Time Domain Electromagnetic Data using Deep Learning
- https://www.researchgate.net/publication/351507441_A_Neural_Network-Based_Hybrid_Framework_for_Least-Squares_Inversion_of_Transient_Electromagnetic_Data
- https://www.researchgate.net/profile/Yunhe-Liu/publication/382196526_An_Efficient_Bayesian_Inference_for_Geo-electromagnetic_Data_Inversion_based_on_Surrogate_Modeling_with_Adaptive_Sampling_DNN
- https://www.researchgate.net/publication/325980016_Agglomerative_hierarchical_clustering_of_airborne_electromagnetic_data_for_multi-scale_geological_studies
- https://www.earthdoc.org/content/papers/10.3997/2214-4609.202410980 -> Deep Learning Assisted 2-D Current Density Modelling of Very Low Frequency Electromagnetic Data
- https://npg.copernicus.org/articles/26/13/2019/ -> Denoising stacked autoencoders for transient electromagnetic signal denoising
- https://www.researchgate.net/publication/373836226_An_information_theoretic_Bayesian_uncertainty_analysis_of_AEM_systems_over_Menindee_Lake_Australia -> An information theoretic Bayesian uncertainty analysis of AEM systems over Menindee Lake, Australia
- https://www.researchgate.net/publication/348850484_Effect_of_Data_Normalization_on_Neural_Networks_for_the_Forward_Modelling_of_Transient_Electromagnetic_Data
- https://www.researchgate.net/publication/342153377_Fast_imaging_of_time-domain_airborne_EM_data_using_deep_learning_technology
- https://library.seg.org/doi/10.4133/JEEG4.2.93 -> Neural Network Interpretation of High Frequency Electromagnetic Ellipticity Data Part I: Understanding the Half-Space and Layered Earth Response
- https://arxiv.org/abs/2207.12607 -> Physics Embedded Machine Learning for Electromagnetic Data Imaging
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae244/7713480 -> Physics-guided deep learning-based inversion for airborne electromagnetic data
- https://library.seg.org/doi/abs/10.1190/geo2024-0282.1 -> Comparative Analysis of Deep Learning and Traditional Airborne Electromagnetic Data Processing: A Case Study [UNSEEN]
- https://www.researchgate.net/publication/359441000_Surface_parameters_and_bedrock_properties_covary_across_a_mountainous_watershed_Insights_from_machine_learning_and_geophysics
- https://www.researchgate.net/publication/337166479_Using_machine_learning_to_interpret_3D_airborne_electromagnetic_inversions
- https://www.researchgate.net/publication/344397798_TEMDnet_A_Novel_Deep_Denoising_Network_for_Transient_Electromagnetic_Signal_With_Signal-to-Image_Transformation
- https://www.researchgate.net/publication/366391168_Two-dimensional_fast_imaging_of_airborne_EM_data_based_on_U-net
ERT
- https://www.sciencedirect.com/science/article/pii/S0013795224001893 -> Geo-constrained clustering of resistivity data revealing the heterogeneous lithological architectures and the distinctive geoelectrical signature of shallow deposits
중력
- https://ieeexplore.ieee.org/abstract/document/10597585 -> 3D Basement Relief and Density Inversion Based on EfficientNetV2 Deep Learning Network [UNSEEN]
- https://link.springer.com/article/10.1007/s11770-024-1096-5 -> 3D gravity inversion using cycle-consistent generative adversarial network [UNSEEN]
- https://www.researchgate.net/publication/365142017_3D_gravity_inversion_based_on_deep_learning
- https://www.researchgate.net/publication/378930477_A_Deep_Learning_Gravity_Inversion_Method_Based_on_a_Self-Constrained_Network_and_Its_Application
- https://www.researchgate.net/publication/362276214_DecNet_Decomposition_network_for_3D_gravity_inversion -> Olympic Dam example here
- https://www.researchgate.net/publication/368448190_Deep_Learning_to_estimate_the_basement_depth_by_gravity_data_using_Feedforward_neural_network
- https://www.researchgate.net/publication/326231731_Depth_and_Lineament_Maps_Derived_from_North_Cameroon_Gravity_Data_Computed_by_Artificial_Neural_Network_International_Journal_of_Geophysics_vol_2018_Article_ID_1298087_13_pages_2018
- https://www.researchgate.net/publication/366922016_Fast_imaging_for_the_3D_density_structures_by_machine_learning_approach
- https://www.researchgate.net/publication/370230217_Inversion_of_the_Gravity_Gradiometry_Data_by_ResUet_Network_An_Application_in_Nordkapp_Basin_Barents_Sea
- https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.897055/full -> High-precision downward continuation of the potential field based on the D-Unet network
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10672527 -> RTM Gravity Forward Modeling Using Improved Fully Connected Deep Neural Networks
Hyperspectral
- https://www.researchgate.net/publication/380391736_A_review_on_hyperspectral_imagery_application_for_lithological_mapping_and_mineral_prospecting_Machine_learning_techniques_and_future_prospects
- https://www.researchgate.net/publication/372876863_Ore-Grade_Estimation_from_Hyperspectral_Data_Using_Convolutional_Neural_Networks_A_Case_Study_at_the_Olympic_Dam_Iron_Oxide_Copper-Gold_Deposit_Australia [UNSEEN]
Joint Inversion
- https://www.researchgate.net/publication/383454185_Deep_joint_inversion_of_electromagnetic_seismic_and_gravity_data
- https://ieeexplore.ieee.org/abstract/document/10677418 -> Joint Inversion of Seismic and Resistivity Data Powered by Deep-learning [UNSEEN]
자기학
- https://www.researchgate.net/publication/348697645_3D_geological_structure_inversion_from_Noddy-generated_magnetic_data_using_deep_learning_methods
- https://www.researchgate.net/publication/360288249_3D_Inversion_of_Magnetic_Gradient_Tensor_Data_Based_on_Convolutional_Neural_Networks
- https://www.researchgate.net/publication/295902270_Artificial_neural_network_inversion_of_magnetic_anomalies_caused_by_2D_fault_structures
- https://www.researchgate.net/publication/354002966_Convolutional_neural_networks_for_the_characterization_of_magnetic_anomalies
- https://www.researchgate.net/publication/354772176_Convolution_Neural_Networks_Applied_to_the_Interpretation_of_Lineaments_in_Aeromagnetic_Data
- https://www.researchgate.net/publication/363550362_High-precision_downward_continuation_of_the_potential_field_based_on_the_D-Unet_network
- https://www.sciencedirect.com/science/article/pii/S0169136822004279?via%3Dihub -> Magnetic grid resolution enhancement using machine learning: A case study from the Eastern Goldfields Superterrane
- https://www.researchgate.net/publication/347173621_Predicting_Magnetization_Directions_Using_Convolutional_Neural_Networks -> Paywalled
- https://www.researchgate.net/publication/361114986_Reseaux_de_Neurones_Convolutifs_pour_la_Caracterisation_d'Anomalies_Magnetiques -> French original of the above
Magnetotellurics
- https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-024-03842-3 -> 2D magnetotelluric imaging method based on visionary self-attention mechanism and data science
- https://ieeexplore.ieee.org/abstract/document/10530937 -> A Magnetotelluric Data Denoising Method Based on Lightweight Ensemble Learning [UNSEEN]
- https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggae166/7674890 -> Deep basin conductor characterization using machine learning-assisted magnetotelluric Bayesian inversion in the SW Barents Sea
- http://en.dzkx.org/article/doi/10.6038/cjg2024R0580 -> Fast inversion method of apparent resistivity based on deep learning
- https://www.researchgate.net/publication/367504269_Flexible_and_accurate_prior_model_construction_based_on_deep_learning_for_2D_magnetotelluric_data_inversion
- https://www.sciencedirect.com/science/article/pii/S2214579624000510 -> Intelligent Geological Interpretation of AMT Data Based on Machine Learning
- https://ieeexplore.ieee.org/abstract/document/10551853 -> Magnetotelluric Data Inversion Based on Deep Learning with the Self-attention Mechanism
- https://www.researchgate.net/publication/361741409_Physics-Driven_Deep_Learning_Inversion_with_Application_to_Magnetotelluric
- https://www.researchgate.net/publication/355568465_Stochastic_inversion_of_magnetotelluric_data_using_deep_reinforcement_learning
- https://www.researchgate.net/publication/354360079_Two-dimensional_deep_learning_inversion_of_magnetotelluric_sounding_data
- https://ieeexplore.ieee.org/abstract/document/10530923 -> Three Dimensional Magnetotelluric Forward Modeling Through Deep Learning
Passive Seismic
- https://nature.com/articles/s41467-020-17841-x -> Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
- https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL099053 -> Eikonal Tomography With Physics-Informed Neural Networks: Rayleigh Wave Phase Velocity in the Northeastern Margin of the Tibetan Plateau
- https://arxiv.org/abs/2403.15095 -> End-to-End Mineral Exploration with Artificial Intelligence and Ambient Noise Tomography
- https://www.nature.com/articles/s41598-019-50381-z -> High-resolution seismic tomography of Long Beach, CA using machine learning
지진
- https://www.sciencedirect.com/science/article/pii/S0040195124002166 -> Reprocessing and interpretation of legacy seismic data using machine learning from the Granada Basin, Spain
- https://ojs.uni-miskolc.hu/index.php/geosciences/article/view/3313 -> EDGE DETECTION OF TOMOGRAPHIC IMAGES USING TRADITIONAL AND DEEP LEARNING TOOLS
Surface Resistivity
- https://www.researchgate.net/publication/367606119_Deriving_Surface_Resistivity_from_Polarimetric_SAR_Data_Using_Dual-Input_UNet
불확실성
- https://library.seg.org/doi/abs/10.1190/GEM2024-084.1 -> Quantifying uncertainty in 3D geophysical inverse problems: Advancing from deterministic to Bayesian and deep generative models [UNSEEN]
Geothermal
- https://www.osti.gov/biblio/2335471 - Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada [adjacent but interesting]
- https://gdr.openei.org/submissions/1402 - Associated code
- https://catalog.data.gov/dataset/python-codebase-and-jupyter-notebooks-applications-of-machine-learning-techniques-to-geoth
- https://www.researchgate.net/publication/341418586_Preliminary_Report_on_Applications_of_Machine_Learning_Techniques_to_the_Nevada_Geothermal_Play_Fairway_Analysis
지도
- https://www.researchgate.net/publication/347786302_Semantic_Segmentation_Deep_Learning_for_Extracting_Surface_Mine_Extents_from_Historic_Topographic_Maps
광물
- https://www.researchgate.net/publication/357942198_Mineral_classification_of_lithium-bearing_pegmatites_based_on_laser-induced_breakdown_spectroscopy_Application_of_semi-supervised_learning_to_detect_known_minerals_and_unknown_material
- https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046 -> Classifying Minerals using Deep Learning Algorithms
- https://www.researchgate.net/publication/370835450_Predicting_new_mineral_occurrences_and_planetary_analog_environments_via_mineral_association_analysis
- https://www.researchgate.net/publication/361230503_What_is_Mineral_Informatics
NLP
- https://www.researchgate.net/publication/358616133_Chinese_Named_Entity_Recognition_in_the_Geoscience_Domain_Based_on_BERT
- https://www.researchgate.net/publication/339394395_Dictionary-Based_Automated_Information_Extraction_From_Geological_Documents_Using_a_Deep_Learning_Algorithm
- https://www.aclweb.org/anthology/2020.lrec-1.568/ -> Embeddings for Named Entity Recognition in Geoscience Portuguese Literature
- https://www.researchgate.net/publication/359186219_Few-shot_learning_for_name_entity_recognition_in_geological_text_based_on_GeoBERT
- https://www.researchgate.net/publication/333464862_GeoDocA_-_Fast_Analysis_of_Geological_Content_in_Mineral_Exploration_Reports_A_Text_Mining_Approach
- https://www.researchgate.net/publication/366710921_Geological_profile-text_information_association_model_of_mineral_exploration_reports_for_fast_analysis_of_geological_content
- https://www.researchgate.net/publication/330835955_Geoscience_Keyphrase_Extraction_Algorithm_Using_Enhanced_Word_Embedding [UNSEEN]
- https://www.researchgate.net/publication/332997161_GNER_A_Generative_Model_for_Geological_Named_Entity_Recognition_Without_Labeled_Data_Using_Deep_Learning
- https://www.researchgate.net/publication/321850315_Information_extraction_and_knowledge_graph_construction_from_geoscience_literature
- https://www.researchgate.net/publication/365929623_Named_Entity_Annotation_Schema_for_Geological_Literature_Mining_in_the_Domain_of_Porphyry_Copper_Deposits
- https://www.researchgate.net/publication/329621358_Ontology-Based_Enhanced_Word_Embedding_for_Automated_Information_Extraction_from_Geoscience_Reports
- https://www.researchgate.net/publication/379808469_Ontology-driven_relational_data_mapping_for_constructing_a_knowledge_graph_of_porphyry_copper_deposits -> Ontology-driven relational data mapping for constructing a knowledge graph of porphyry copper deposits
- https://www.researchgate.net/publication/327709479_Prospecting_Information_Extraction_by_Text_Mining_Based_on_Convolutional_Neural_Networks-A_Case_Study_of_the_Lala_Copper_Deposit_China
- https://ieeexplore.ieee.org/document/8711400 -> Research and Application on Geoscience Literature Knowledge Discovery Technology
- https://www.researchgate.net/publication/332328315_Text_Mining_to_Facilitate_Domain_Knowledge_Discovery
- https://www.researchgate.net/publication/351238658_Understanding_Ore-Forming_Conditions_using_Machine_Reading_of_Text
- https://www.researchgate.net/publication/359089763_Visual_analytics_and_information_extraction_of_geological_content_for_text-based_mineral_exploration_reports
- https://www.researchgate.net/publication/354754114_What_is_this_article_about_Generative_summarization_with_the_BERT_model_in_the_geosciences_domain
- https://www.slideshare.net/phcleverley/where-text-analytics-meets-geoscience -> Where text analytics meets geoscience
Petrography
- https://www.researchgate.net/publication/335226326_Digital_petrography_Mineralogy_and_porosity_identification_using_machine_learning_algorithms_in_petrographic_thin_section_images
Last edited: 29/09/2020 The below are a collection of works from when I was doing a review
Public Mineral Prospectivity Mapping
개요
- https://www.researchgate.net/publication/331852267_Applying_Spatial_Prospectivity_Mapping_to_Exploration_Targeting_Fundamental_Practical_issues_and_Suggested_Solutions_for_the_Future
- https://www.researchgate.net/publication/284890591_Geochemical_Anomaly_and_Mineral_Prospectivity_Mapping_in_GIS
- https://www.researchgate.net/publication/341472154_Geodata_Science-Based_Mineral_Prospectivity_Mapping_A_Review
- https://www.researchgate.net/publication/275338029_Introduction_to_the_Special_Issue_GIS-based_mineral_potential_modelling_and_geological_data_analyses_for_mineral_exploration
- https://www.researchgate.net/publication/339074334_Introduction_to_the_special_issue_on_spatial_modelling_and_analysis_of_ore-forming_processes_in_mineral_exploration_targeting
- https://www.researchgate.net/publication/317319129_Natural_Resources_Research_Publications_on_Geochemical_Anomaly_and_Mineral_Potential_Mapping_and_Introduction_to_the_Special_Issue_of_Papers_in_These_Fields
- https://www.researchgate.net/publication/46696293_Selection_of_coherent_deposit-type_locations_and_their_application_in_data-driven_mineral_prospectivity_mapping
Geochemistry
https://www.researchgate.net/publication/375926319_A_paradigm_shift_in_Precambrian_research_driven_by_big_data
https://www.researchgate.net/publication/359447201_A_review_of_machine_learning_in_geochemistry_and_cosmochemistry_Method_improvements_and_applications
- https://jaywen.com/files/He_2022_Applied_Geochemistry.pdf
https://www.researchgate.net/publication/220164381_Application_of_geochemical_zonality_coefficients_in_mineral_prospectivity_mapping
https://www.researchgate.net/publication/238505045_Analysis_and_mapping_of_geochemical_anomalies_using_logratio-transformed_stream_sediment_data_with_censored_values
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EA002626 -> Comparative Study on Three Autoencoder-Based Deep Learning Algorithms for Geochemical Anomaly Identification
https://www.researchgate.net/publication/373758047_Decision-making_within_geochemical_exploration_data_based_on_spatial_uncertainty_-A_new_insight_and_a_futuristic_review
https://www.researchgate.net/publication/331505001_Deep_learning_and_its_application_in_geochemical_mapping
https://www.researchgate.net/publication/380262759_Factor_analysis_in_residual_soils_of_the_Iberian_Pyrite_Belt_Spain_Comparison_between_raw_data_log_transformation_data_and_compositional_data [UNSEEN]
https://www.researchgate.net/publication/272091723_Geochemical_characteristics_of_mineral_deposits_Implications_for_ore_genesis
https://www.researchgate.net/publication/257189047_Geochemical_mineralization_probability_index_GMPI_A_new_approach_to_generate_enhanced_stream_sediment_geochemical_evidential_map_for_increasing_probability_of_success_in_mineral_potential_mapping
https://www.researchgate.net/publication/333497470_Integration_of_auto-encoder_network_with_density-based_spatial_clustering_for_geochemical_anomaly_detection_for_mineral_exploration
https://www.researchgate.net/publication/319303831_Introduction_to_the_thematic_issue_Analysis_of_exploration_geochemical_data_for_mapping_of_anomalies
https://www.researchgate.net/publication/356722687_Machine_learning-based_prediction_of_trace_element_concentrations_using_data_from_the_Karoo_large_igneous_province_and_its_application_in_prospectivity_mapping#fullTextFileContent
https://www.degruyter.com/document/doi/10.2138/am-2023-9115/html -> Machine learning applied to apatite compositions for determining mineralization potential [UNSEEN]
https://www.researchgate.net/publication/257026525_Primary_geochemical_characteristics_of_mineral_deposits_-_Implications_for_exploration
https://www.researchgate.net/publication/283554338_Recognition_of_geochemical_anomalies_using_a_deep_autoencoder_network
- https://zarmesh.com/wp-content/uploads/2017/04/Recognition-of-geochemical-anomalies-using-a-deep-autoencoder-network.pdf
https://www.researchgate.net/publication/349606557_Robust_Feature_Extraction_for_Geochemical_Anomaly_Recognition_Using_a_Stacked_Convolutional_Denoising_Autoencoder [UNSEEN]
https://www.researchgate.net/publication/375911531_Spatial_Interpolation_Using_Machine_Learning_From_Patterns_and_Regularities_to_Block_Models#fullTextFileContent
https://www.researchgate.net/publication/259716832_Supervised_and_unsupervised_classification_of_near-mine_soil_Geochemistry_and_Geophysics_data
https://www.researchgate.net/publication/277813662_Supervised_Geochemical_Anomaly_Detection_by_Pattern_Recognition
https://www.researchgate.net/publication/249544991_Usefulness_of_stream_order_to_detect_stream_sediment_geochemical_anomalies
https://www.researchgate.net/publication/321275541_Weighting_stream_sediment_geochemical_samples_as_exploration_indicator_of_deposit_-_type
흐린
- https://www.researchgate.net/publication/272170968_A_Comparative_Analysis_of_Weights_of_Evidence_Evidential_Belief_Functions_and_Fuzzy_Logic_for_Mineral_Potential_Mapping_Using_Incomplete_Data_at_the_Scale_of_Investigation
- https://www.researchgate.net/publication/267816279_Fuzzification_of_continuous-value_spatial_evidence_for_mineral_prospectivity_mapping
- https://www.researchgate.net/publication/301635716_Union_score_and_fuzzy_logic_mineral_prospectivity_mapping_using_discretized_and_continuous_spatial_evidence_values
불확실성
- https://deliverypdf.ssrn.com/delivery.php?ID=555064031119110002088087068121000096050036019060022069010050000053011056029076002067121000064004002088113115000107115017083105004026015092089005123065040099024112018026013043065104094012124120126039100033055018066074125089104115090100009064122122019003015085069021024027072126106082092110&EXT=pdf&INDEX=TRUE -> Estimating uncertainties in 3-D models of complex fold-and-thrust 2 belts: a case study of the Eastern Alps triangle zone
- https://www.researchgate.net/publication/333339659_Incorporating_conceptual_and_interpretation_uncertainty_to_mineral_prospectivity_modelling
- https://www.researchgate.net/publication/235443307_Managing_uncertainty_in_exploration_targeting
- https://www.researchgate.net/publication/255909185_The_upside_of_uncertainty_Identification_of_lithology_contact_zones_from_airborne_geophysics_and_satellite_data_using_random_forests_and_support_vector_machines
Geospatial Maps
호주
- https://www.researchgate.net/publication/334440382_Mapping_iron_oxide_Cu-Au_IOCG_mineral_potential_in_Australia_using_a_knowledge-driven_mineral_systems-based_approach
남호주
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province - https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
- An assessment of the uranium and geothermal prospectivity of east-central South Australia - https://d28rz98at9flks.cloudfront.net/72666/Rec2011_034.pdf
NT
- https://www.researchgate.net/publication/285235798_An_assessment_of_the_uranium_and_geothermal_prospectivity_of_the_southern_Northern_Territory
WA
- https://www.researchgate.net/publication/273073675_Building_a_machine_learning_classifier_for_iron_ore_prospectivity_in_the_Yilgarn_Craton
- http://dmpbookshop.eruditetechnologies.com.au/product/district-scale-targeting-for-gold-in-the-yilgarn-craton-part-2-of-the-yilgarn-gold-exploration-targeting-atlas.do$55 purchase
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-prospectivity-of-the-king-leopold-orogen-and-lennard-shelf-analysis-of-potential-field-data-in-the-west-kimberley-region-geographical-product-n14bnzp.do
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling-geographical-product-n12dzp.do
- http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling.do $22 purchase
- https://researchdata.edu.au/predictive-mineral-discovery-gold-mineral/1209568?source=suggested_datasets - Predictive mineral discovery in the eastern Yilgarn Craton: an example of district-scale targeting of an orogenic gold mineral system - https://d28rz98at9flks.cloudfront.net/82617/Y4_Gold_Targeting.zip
- http://dmpbookshop.eruditetechnologies.com.au/product/prospectivity-analysis-of-the-halls-creek-orogen-western-australia-using-a-mineral-systems-approach-geographical-product-n15af3zp.do
- https://researchdata.edu.au/prospectivity-analysis-using-063-m436/1424743 - Prospectivity analysis using a mineral systems approach - Capricorn case study project CSIRO Prospectivity analysis using a mineral systems approach - Capricorn case study project (13.5 GB Download)
- http://dmpbookshop.eruditetechnologies.com.au/product/regional-scale-targeting-for-gold-in-the-yilgarn-craton-part-1-of-the-yilgarn-gold-exploration-targeting-atlas.do $55 purchase
- https://www.researchgate.net/publication/263928515_Towards_Australian_metallogenic_maps_through_space_and_time
- https://www.sciencedirect.com/science/article/abs/pii/S0301926810002111 - Yilgarn
브라질
- https://www.researchgate.net/publication/340633563_CATALOG_OF_PROSPECTIVITY_MAPS_OF_SELECTED_AREAS_FROM_BRAZIL
- https://www.researchgate.net/publication/341936771_Modeling_of_Cu-Au_Prospectivity_in_the_Carajas_mineral_province_Brazil_through_Machine_Learning_Dealing_with_Imbalanced_Training_Data
- https://www.researchgate.net/publication/287270273_Nickel_prospective_modelling_using_fuzzy_logic_on_nova_Brasilandia_metasedimentary_belt_Rondonia_Brazil
- https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200261 - Sao Francisco Craton Nickel
호주
- https://www.researchgate.net/publication/248211737_A_continent-wide_study_of_Australia's_uranium_potential
- https://www.researchgate.net/publication/334440382_Mapping_iron_oxide_Cu-Au_IOCG_mineral_potential_in_Australia_using_a_knowledge-driven_mineral_systems-based_approach
- https://researchdata.edu.au/predictive-model-opal-mining-approach/673159/?refer_q=rows=15/sort=score%20desc/class=collection/p=2/q=mineral%20prospectivity%20map/ - Opal
SA
- https://data.gov.au/dataset/ds-ga-a8619169-1c2a-6697-e044-00144fdd4fa6/details?q= -> An assessment of the uranium and geothermal prospectivity of east central South Australia
- https://d28rz98at9flks.cloudfront.net/72666/Rec2011_034.pdf -> An assessment of the uranium and geothermal prospectivity of east-central South Australia
- https://www.pir.sa.gov.au/__data/assets/pdf_file/0011/239636/204581-001_wise_high.pdf - Eastern Gawler - WPA
- http://www.energymining.sa.gov.au/minerals/knowledge_centre/mesa_journal/previous_feature_articles/new_prospectivity_map
- https://catalog.sarig.sa.gov.au/geonetwork/srv/eng/catalog.search#/metadata/e59cd4ba-1a0a-4911-9e6a-58d80576678d - Olympic Domain IOCG Prospectivity model
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province - https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
WA
- https://www.sciencedirect.com/science/article/abs/pii/S0301926810002111 - Yilgarn Karol Czarnota
- https://www.researchgate.net/publication/229333177_Prospectivity_analysis_of_the_Plutonic_Marymia_Greenstone_Belt_Western_Australia
- https://www.researchgate.net/publication/280039091_Mineral_systems_approach_applied_to_GIS-based_2D-prospectivity_modelling_of_geological_regions_Insights_from_Western_Australia
- https://www.researchgate.net/publication/351238658_Understanding_Ore-Forming_Conditions_using_Machine_Reading_of_Text
NT
- https://www.researchgate.net/publication/285235798_An_assessment_of_the_uranium_and_geothermal_prospectivity_of_the_southern_Northern_Territory
- https://www.researchgate.net/publication/342352173_Modelling_gold_potential_in_the_Granites-Tanami_Orogen_NT_Australia_A_comparative_study_using_continuous_and_data-driven_techniques
NSW
- https://www.resourcesandgeoscience.nsw.gov.au/miners-and-explorers/geoscience-information/projects/mineral-potential-mapping#_southern-_new-_england-_orogen-mineral-potential
- https://www.smedg.org.au/GSNSW_2019_Blevin.pdf - Eastern Lachlan Orogen
- https://www.researchgate.net/publication/265915602_Comparing_prospectivity_modelling_results_and_past_exploration_data_A_case_study_of_porphyry_Cu-Au_mineral_systems_in_the_Macquarie_Arc_Lachlan_Fold_Belt_New_South_Wales
브라질
- https://www.researchgate.net/publication/340633563_CATALOG_OF_PROSPECTIVITY_MAPS_OF_SELECTED_AREAS_FROM_BRAZIL
- https://www.researchgate.net/publication/340633739_MINERAL_POTENTIAL_AND_OPORTUNITIES_FOR_THE_EXPLORATION_OF_NEW_GEOLOGICAL_GROUNDS_IN_BRAZIL
- https://www.semanticscholar.org/paper/Mineral-Potential-Mapping-for-Orogenic-Gold-in-the-Silva-Silva/a23a9ce4da48863da876758afa9e1d2723088853
- https://www.scielo.br/scielo.php?script=sci_arttext&pid=S2317-48892016000200261 - Supergene nickel deposits in outhwestern Sao Francisco Carton, Brazil
Carajas
- https://www.researchgate.net/publication/258466504_Self-Organizing_Maps_A_Data_Mining_Tool_for_the_Analysis_of_Airborne_Geophysical_Data_Collected_over_the_Brazilian_Amazon
- https://www.researchgate.net/publication/258647519_Semiautomated_geologic_mapping_using_self-organizing_maps_and_airborne_geophysics_in_the_Brazilian_Amazon
- https://www.researchgate.net/publication/235443304_GIS-Based_prospectivity_mapping_for_orogenic_gold_A_case_study_from_the_Andorinhas_region_Brasil
- https://www.researchgate.net/publication/341936771_Modeling_of_Cu-Au_Prospectivity_in_the_Carajas_mineral_province_Brazil_through_Machine_Learning_Dealing_with_Imbalanced_Training_Data
- https://www.researchgate.net/publication/332031621_Predictive_lithological_mapping_through_machine_learning_methods_a_case_study_in_the_Cinzento_Lineament_Carajas_Province_Brazil
- https://www.researchgate.net/publication/340633659_Copper-gold_favorability_in_the_Cinzento_Shear_Zone_Carajas_Mineral_Province
- https://www.researchgate.net/publication/329477409_Favorability_potential_for_IOCG_type_deposits_in_the_Riacho_do_Pontal_Belt_New_insights_for_identifying_prospects_of_IOCG-type_deposits_in_NE_Brazil
- https://www.researchgate.net/publication/339453836_Uranium_anomalies_detection_through_Random_Forest_regression
- https://d1wqtxts1xzle7.cloudfront.net/48145419/Artificial_neural_networks_applied_to_mi20160818-5365-odv4na.pdf?1471522188=&response-content-disposition=inline%3B+filename%3DArtificial_neural_networks_applied_to_mi.pdf&Expires=1593477539&Signature=DNmSxKogrD54dE4LX~8DT4K7vV0ZGcf8Q2RRfXEPsCc8PGiBrbeBpy4NVQdCiENLz-YfSzVGk6LI8k5MEGxR~qwnUn9ISLHDuIau6VqBFSEA29jMixCbvQM6hbkUJKQlli-AuSPUV23TsSk76kB6amDYtwNHmBnUPzTQGZLj2XkzJza9PA-7W2-VrPQKHNPxJp3z8J0mPq4rhmHZLaFMMSL6QMpK5qpvSqi6Znx-kIhCprlyYfODisq0unOIwnEQstiMf2RnB6gPmGOodhNlLsSr01e7TvtvFDBOQvhhooeDeQrvkINN4DJjAIIrbrcQ8B2b-ATQS0a3QQe93h-VFA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA - Leite, EPL; de Souza Filho, CR Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geoph. Prosp. 2009, 57, 1049–1065.
- https://link-springer-com.access.library.unisa.edu.au/content/pdf/10.1007/s11053-015-9263-2.pdf - A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation
- https://library.seg.org/doi/abs/10.1190/sbgf2011-245 - Gold Prospectivity Mapping of Andorinhas Greenstone Belt, Para
Gurupi
- https://www.researchgate.net/publication/312220651_Predictive_Mapping_of_Prospectivity_in_the_Gurupi_Orogenic_Gold_Belt_North-Northeast_Brazil_An_Example_of_District-Scale_Mineral_System_Approach_to_Exploration_Targeting
호주
- https://www.researchgate.net/publication/260107484_Unsupervised_clustering_of_continental-scale_geophysical_and_geochemical_data_using_Self-Organising_Maps
- https://www.researchgate.net/publication/332263305_A_speedy_update_on_machine_learning_applied_to_bedrock_mapping_using_geochemistry_or_geophysics_examples_from_the_Pacific_Rim_and_nearby
- https://www.researchgate.net/publication/317312520_Catchment-based_gold_prospectivity_analysis_combining_geochemical_geophysical_and_geological_data_across_northern_Australia
- https://www.researchgate.net/publication/326571155_Continental-scale_mineral_prospectivity_assessment_using_the_National_Geochemical_Survey_of_Australia_NGSA_dataset
- https://www.researchgate.net/publication/334440382_Mapping_iron_oxide_Cu-Au_IOCG_mineral_potential_in_Australia_using_a_knowledge-driven_mineral_systems-based_approach
- https://www.researchgate.net/publication/282189370_Uranium_Prospectivity_Mapping_Across_the_Australian_Continent_via_Unsupervised_Cluster_Analysis_of_Integrated_Remote_Sensing_Data
남호주
- https://www.researchgate.net/publication/335313790_Prospectivity_modelling_of_the_Olympic_Cu-Au_Province - https://services.sarig.sa.gov.au/raster/ProspectivityModelling/wms?service=wms&version=1.1.1&REQUEST=GetCapabilities
퀸즈랜드
- https://www.researchgate.net/publication/317312520_Catchment-based_gold_prospectivity_analysis_combining_geochemical_geophysical_and_geological_data_across_northern_Australia
- https://www.researchgate.net/publication/252707107_GIS-based_epithermal_copper_prospectivity_mapping_of_the_Mt_Isa_Inlier_Australia_Implications_for_exploration_targeting
- https://www.researchgate.net/publication/222211452_Predictive_modelling_of_prospectivity_for_Pb-Zn_deposits_in_the_Lawn_Hill_Region_Queensland_Australia
New South Wales
- https://www.researchgate.net/publication/336349643_MINERAL_POTENTIAL_MAPPING_AS_A_STRATEGIC_PLANNING_TOOL_IN_THE_EASTERN_LACHLAN_OROGEN_NSW
- https://www.publish.csiro.au/ex/pdf/ASEG2013ab236 - Mineral prospectivity analysis of the Wagga–Omeo belt in NSW
- https://www.researchgate.net/publication/329761040_NSW_Zone_54_Mineral_Systems_Mineral_Potential_Report
- https://www.researchgate.net/publication/337569823_Practical_Implementation_of_Random_Forest-Based_Mineral_Potential_Mapping_for_Porphyry_Cu-Au_Mineralization_in_the_Eastern_Lachlan_Orogen_NSW_Australia
- https://www.researchgate.net/publication/333551776_Translating_expressions_of_intrusion-related_mineral_systems_into_mappable_spatial_proxies_for_mineral_potential_mapping_Case_studies_from_the_Southern_New_England_Orogen_Australia
태즈메이니아
- https://www.researchgate.net/publication/262380025_Mapping_geology_and_volcanic-hosted_massive_sulfide_alteration_in_the_Hellyer-Mt_Charter_region_Tasmania_using_Random_Forests_TM_and_Self-Organising_Maps
빅토리아
- https://www.researchgate.net/publication/323856713_Lithological_mapping_using_Random_Forests_applied_to_geophysical_and_remote_sensing_data_a_demonstration_study_from_the_Eastern_Goldfields_of_Australia
- https://publications.csiro.au/publications/#publication/PIcsiro:EP123339/SQmineral%20prospectivity/RP1/RS50/RORECENT/STsearch-by-keyword/LISEA/RI16/RT26 [nickel]
- https://www.researchgate.net/publication/257026553_Regional_prospectivity_analysis_for_hydrothermal-remobilised_nickel_mineral_systems_in_western_Victoria_Australia
Western Australia
- https://www.researchgate.net/publication/274714146_Reducing_subjectivity_in_multi-commodity_mineral_prospectivity_analyses_Modelling_the_west_Kimberley_Australia
- https://www.researchgate.net/publication/319013132_Identifying_mineral_prospectivity_using_3D_magnetotelluric_potential_field_and_geological_data_in_the_east_Kimberley_Australia
- https://www.researchgate.net/publication/280930127_Regional-scale_targeting_for_gold_in_the_Yilgarn_Craton_Part_1_of_the_Yilgarn_Gold_Exploration_Targeting_Atlas
- https://www.researchgate.net/publication/279533541_District-scale_targeting_for_gold_in_the_Yilgarn_Craton_Part_2_of_the_Yilgarn_Gold_Exploration_Targeting_Atlas
- https://www.researchgate.net/publication/257026568_Exploration_targeting_for_orogenic_gold_deposits_in_the_Granites-Tanami_Orogen_Mineral_system_analysis_targeting_model_and_prospectivity_analysis
- https://www.researchgate.net/publication/280039091_Mineral_systems_approach_applied_to_GIS-based_2D-prospectivity_modelling_of_geological_regions_Insights_from_Western_Australia (the West Arunta Orogen, West Musgrave Orogen and Gascoyne Province - http://dmpbookshop.eruditetechnologies.com.au/product/mineral-systems-analysis-of-the-west-musgrave-province-regional-structure-and-prospectivity-modelling.do
- https://reader.elsevier.com/reader/sd/pii/S0169136810000417? - token=9FD1C06A25E7ECC0C384C0ECF976E4BC9C36047C53CEED08066811979A640E89DD94C49510D1B500C6FF5E69982E018E Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia
- https://research-repository.uwa.edu.au/en/publications/exploration-targeting-for-orogenic-gold-deposits-in-the-granites- - Tanami orogen
- https://www.researchgate.net/publication/332631130_Fuzzy_inference_systems_for_prospectivity_modeling_of_mineral_systems_and_a_case-study_for_prospectivity_mapping_of_surficial_Uranium_in_Yeelirrie_Area_Western_Australia_Ore_Geology_Reviews_71_839-852Tasmania
- https://publications.csiro.au/rpr/download?pid=csiro:EP102133&dsid=DS3 [nickel]
Endowment Modelling
- https://www.researchgate.net/publication/248211962_A_new_method_for_spatial_centrographic_analysis_of_mineral_deposit_clusters
- https://www.researchgate.net/publication/275620329_A_Time-Series_Audit_of_Zipf's_Law_as_a_Measure_of_Terrane_Endowment_and_Maturity_in_Mineral_Exploration
- https://www.researchgate.net/publication/341087909_Assessing_the_variability_of_expert_estimates_in_the_USGS_Three-part_Mineral_Resource_Assessment_Methodology_A_call_for_increased_skill_diversity_and_scenario-based_training
- https://github.com/iagoslc/ZipfsLaw_Quadrilatero_Ferrifero
- https://www.researchgate.net/publication/222834436_Controls_on_mineral_deposit_occurrence_inferred_from_analysis_of_their_spatial_pattern_and_spatial_association_with_geological_features
- https://www.researchgate.net/publication/229792860_From_Predictive_Mapping_of_Mineral_Prospectivity_to_Quantitative_Estimation_of_Number_of_Undiscovered_Prospects
- https://www.researchgate.net/publication/330994502_Global_Grade-and-Tonnage_Modeling_of_Uranium_deposits
- https://pubs.geoscienceworld.org/segweb/economicgeology/article-abstract/103/4/829/127993/Linking-Mineral-Deposit-Models-to-Quantitative?redirectedFrom=fulltext
- https://www.researchgate.net/publication/238365283_Metal_endowment_of_cratons_terranes_and_districts_Insights_from_a_quantitative_analysis_of_regions_with_giant_and_super-giant_deposits
- https://www.researchgate.net/publication/308778798_Spatial_analysis_of_mineral_deposit_distribution_A_review_of_methods_and_implications_for_structural_controls_on_iron_oxide-copper-gold_mineralization_in_Carajas_Brazil
- https://www.researchgate.net/publication/229347041_Predictive_mapping_of_prospectivity_and_quantitative_estimation_of_undiscovered_VMS_deposits_in_Skellefte_district_Sweden
- https://www.researchgate.net/publication/342405763_Predicting_grade-tonnage_characteristics_of_undiscovered_mineralisation_application_of_the_USGS_Three-part_Undiscovered_Mineral_Resource_Assessment_to_the_Sandstone_Greenstone_Belt_of_the_Yilgarn_Bloc
- https://www.sciencedirect.com/science/article/pii/S0169136810000685
- https://www.researchgate.net/publication/240301743_Spatial_statistical_analysis_of_the_distribution_of_komatiite-hosted_nickel_sulfide_deposits_in_the_Kalgoorlie_terrane_Western_Australia_Clustered_or_Not
World Models
- https://www.researchgate.net/publication/331283650_Archean_crust_and_metallogenic_zones_in_the_Amazonian_Craton_sensed_by_satellite_gravity_data
- https://eartharxiv.org/2kjvc/ -> Global distribution of sediment-hosted metals controlled by craton edge stability
- https://www.researchgate.net/post/Is_it_possible_to_derive_free_air_anomaly_or_bouguer_anomaly_from_gravity_disturbance_data
- https://www.researchgate.net/publication/325344128_The_role_of_basement_control_in_Iron_Oxide-Copper-Gold_mineral_systems_revealed_by_satellite_gravity_models
- https://www.researchgate.net/publication/331428028_Supplementary_Material_for_the_paper_Archean_crust_and_metallogenic_zones_in_the_Amazonian_Craton_sensed_by_satellite_gravity_data
- https://www.leouieda.com/pdf/use-the-disturbance.pdf
- https://www.leouieda.com/papers/use-the-disturbance.html
Financial Forecasting
- https://www.researchgate.net/publication/317137060_Forecasting_copper_prices_by_decision_tree_learning
- https://www.researchgate.net/publication/4874824_Mine_Size_and_the_Structure_of_Costs
Agent based Modelling
- https://mpra.ub.uni-muenchen.de/62159/ -> Mineral exploration as a game of chance [Agent Based Modelling]
Spectral Unmixing
- Overviews and examples, with some focus on neural network approaches.
신경망
- https://www.researchgate.net/publication/224180646_A_neural_network_approach_for_pixel_unmixing_in_hyperspectral_data
- https://www.researchgate.net/publication/340690859_A_Supervised_Nonlinear_Spectral_Unmixing_Method_by_Means_of_Neural_Networks
- https://www.researchgate.net/publication/326205017_Classification_of_Hyperspectral_Data_Using_a_Multi-Channel_Convolutional_Neural_Network
- https://www.researchgate.net/publication/339062151_Classification_of_small-scale_hyperspectral_images_with_multi-source_deep_transfer_learning
- https://www.researchgate.net/publication/331824337_Comparative_Analysis_of_Unmixing_Algorithms_Using_Synthetic_Hyperspectral_Data
- https://www.researchgate.net/publication/335501086_Convolutional_Autoencoder_For_Spatial-Spectral_Hyperspectral_Unmixing
- https://www.researchgate.net/publication/341501560_Convolutional_Autoencoder_for_Spectral-Spatial_Hyperspectral_Unmixing
- https://www.researchgate.net/publication/333906204_Deep_convolutional_neural_networks_for_land-cover_classification_with_Sentinel-2_images
- https://www.researchgate.net/publication/356711693_Deep-learning-based_latent_space_encoding_for_spectral_unmixing_of_geological_materials
- https://www.researchgate.net/publication/331505001_Deep_learning_and_its_application_in_geochemical_mapping
- https://www.researchgate.net/publication/332696102_Deep_Learning_for_Classification_of_Hyperspectral_Data_A_Comparative_Review
- https://www.researchgate.net/publication/336889271_Deep_Learning_for_Hyperspectral_Image_Classification_An_Overview
- https://www.researchgate.net/publication/327995228_Deep_Spectral_Convolution_Network_for_Hyperspectral_Unmixing
- https://ieeexplore.ieee.org/abstract/document/10580951 -> Exploring Hybrid Contrastive Learning and Scene-to-Label Information for Multilabel Remote Sensing Image Classification [UNSEEN]
- https://www.researchgate.net/publication/356393038_Generalized_Unsupervised_Clustering_of_Hyperspectral_Images_of_Geological_Targets_in_the_Near_Infrared
- https://ieeexplore.ieee.org/abstract/document/10588073 -> Hyperspectral Image Classification Using Spatial and Spectral Features Based on Deep Learning [UNSEEN]
- https://www.researchgate.net/publication/333301728_Hyperspectral_Image_Classification_Method_Based_on_CNN_Architecture_Embedding_With_Hashing_Semantic_Feature
- https://www.researchgate.net/publication/323950012_Hyperspectral_Unmixing_Using_A_Neural_Network_Autoencoder
- https://www.researchgate.net/publication/339657313_Hyperspectral_unmixing_using_deep_convolutional_autoencoder
- https://www.researchgate.net/publication/339066136_Hyperspectral_Unmixing_Using_Deep_Convolutional_Autoencoders_in_a_Supervised_Scenario
- https://www.researchgate.net/publication/335878933_LITHOLOGICAL_CLASSIFICATION_USING_MULTI-SENSOR_DATA_AND_CONVOLUTIONAL_NEURAL_NETWORKS
- https://ieeexplore.ieee.org/abstract/document/10551851 -> MSNet: Self-Supervised Multiscale Network With Enhanced Separation Training for Hyperspectral Anomaly Detection
- https://www.researchgate.net/publication/331794887_Nonlinear_Unmixing_of_Hyperspectral_Data_via_Deep_Autoencoder_Networks
- https://ieeexplore.ieee.org/abstract/document/10534107 -> ReSC-net: Hyperspectral Image Classification Based on Attention-Enhanced Residual Module and Spatial-Channel Attention
- https://www.researchgate.net/publication/340961027_Recent_Advances_in_Hyperspectral_Unmixing_Using_Sparse_Techniques_and_Deep_Learning
- https://www.researchgate.net/publication/330272600_Semisupervised_Stacked_Autoencoder_With_Cotraining_for_Hyperspectral_Image_Classification
- https://www.researchgate.net/publication/336097421_Spatial-Spectral_Hyperspectral_Unmixing_Using_Multitask_Learning
- https://www.researchgate.net/publication/312355586_Spectral-Spatial_Classification_of_Hyperspectral_Imagery_with_3D_Convolutional_Neural_Network
- https://meetingorganizer.copernicus.org/EGU2020/EGU2020-10719.html -> Sentinel-2 as a tool for mapping iron-bearing alteration minerals: a case study from the Iberian Pyrite Belt (Southern Spain)
- https://www.researchgate.net/publication/334058881_SSDC-DenseNet_A_Cost-Effective_End-to-End_Spectral-Spatial_Dual-Channel_Dense_Network_for_Hyperspectral_Image_Classification
- https://www.researchgate.net/publication/333497470_Integration_of_auto-encoder_network_with_density-based_spatial_clustering_for_geochemical_anomaly_detection_for_mineral_exploration
- https://www.sciencedirect.com/science/article/pii/S0009281924000473 -> Geochemical characteristics and mapping of Reşadiye (Tokat-Türkiye) bentonite deposits using machine learning and sub-pixel mixture algorithms
일반적인
- https://www.sciencedirect.com/science/article/pii/S0273117724004861?dgcid=rss_sd_all -> Optimization of machine learning algorithms for remote alteration mapping
- https://www.researchgate.net/publication/337841253_A_solar_optical_hyperspectral_library_of_rare_earth-bearing_minerals_rare_earth_oxides_copper-bearing_minerals_and_Apliki_mine_surface_samples
- https://ieeexplore.ieee.org/document/10536904 -> A Reversible Generative Network for Hyperspectral Unmixing With Spectral Variability
- https://www.researchgate.net/publication/3204295_Abundance_Estimation_of_Spectrally_Similar_Minerals_by_Using_Derivative_Spectra_in_Simulated_Annealing
- https://www.researchgate.net/publication/338371376_Accuracy_assessment_of_hydrothermal_mineral_maps_derived_from_ASTER_images
- https://www.researchgate.net/publication/337790490_Analysis_of_Most_Significant_Bands_and_Band_Ratios_for_Discrimination_of_Hydrothermal_Alteration_Minerals
- https://www.researchgate.net/project/Deep-Learning-for-Remote-Sensing-2
- https://ieeexplore.ieee.org/abstract/document/10589462 -> Deep Spectral Spatial Feature Enhancement through Transformer for Hyperspectral Image Classification
- https://www.researchgate.net/publication/331876006_Fusion_of_Landsat_and_Worldview_Images
- https://www.researchgate.net/publication/259096595_Geological_mapping_using_remote_sensing_data_A_comparison_of_five_machine_learning_algorithms_their_response_to_variations_in_the_spatial_distribution_of_training_data_and_the_use_of_explicit_spatial_
- https://www.researchgate.net/publication/341802637_Improved_k-means_and_spectral_matching_for_hyperspectral_mineral_mapping
- https://www.researchgate.net/publication/272565561_Integration_and_Analysis_of_ASTER_and_IKONOS_Images_for_the_Identification_of_Hydrothermally-_Altered_Mineral_Exploration_Sites
- https://www.researchgate.net/publication/236271149_Multi-_and_hyperspectral_geologic_remote_sensing_A_review_GRSG_Member_News
- https://www.researchgate.net/publication/220492175_Multi-and_Hyperspectral_geologic_remote_sensing_A_review
- https://www.sciencedirect.com/science/article/pii/S1574954124001572 -> Rapid estimation of soil Mn content by machine learning and soil spectra in large-scale
- https://www.researchgate.net/publication/342184377_remotesensing-12-01239-v2_1
- https://www.researchgate.net/project/Remote-sensing-exploration-of-critical-mineral-deposits
- https://www.researchgate.net/project/Sentinel-2-MSI-for-geological-remote-sensing
- https://www.researchgate.net/publication/323808118_Thermal_infrared_multispectral_remote_sensing_of_lithology_and_mineralogy_based_on_spectral_properties_of_materials
- https://www.researchgate.net/publication/340505978_Unsupervised_and_Supervised_Feature_Extraction_Methods_for_Hyperspectral_Images_Based_on_Mixtures_of_Factor_Analyzers
아프리카
- https://www.researchgate.net/publication/235443308_Application_of_remote_sensing_and_GIS_mapping_to_Quaternary_to_recent_surficial_sediments_of_the_Central_Uranium_district_Namibia
- https://www.researchgate.net/publication/342373512_Geological_mapping_using_Random_Forests_applied_to_Remote_Sensing_data_a_demonstration_study_from_Msaidira-Souk_Al_Had_Sidi_Ifni_inlier_Western_Anti-Atlas_Morocco
- https://www.researchgate.net/publication/340534611_Identifying_high_potential_zones_of_gold_mineralization_in_a_sub-tropical_region_using_Landsat-8_and_ASTER_remote_sensing_data_a_case_study_of_the_Ngoura-Colomines_goldfield_Eastern_Cameroon
- https://www.researchgate.net/publication/342162988_Lithological_and_alteration_mineral_mapping_for_alluvial_gold_exploration_in_the_south_east_of_Birao_area_Central_African_Republic_using_Landsat-8_Operational_Land_Imager_OLI_data
- https://www.researchgate.net/publication/329193841_Mapping_Copper_Mineralisation_using_EO-1_Hyperion_Data_Fusion_with_Landsat_8_OLI_and_Sentinel-2A_in_Moroccan_Anti_Atlas
- https://www.researchgate.net/publication/230918249_SPECTRAL_REMOTE_SENSING_OF_HYDROTHERMAL_ALTERATION_ASSOCIATED_WITH_VOLCANOGENIC_MASSIVE_SULPHIDE_DEPOSITS_GOROB-HOPE_AREA_NAMIBIA
- https://www.researchgate.net/publication/337304180_The_application_of_day_and_night_time_ASTER_satellite_imagery_for_geothermal_and_mineral_mapping_in_East_Africa
- https://www.researchgate.net/publication/336823002_Towards_Multiscale_and_Multisource_Remote_Sensing_Mineral_Exploration_Using_RPAS_A_Case_Study_in_the_Lofdal_Carbonatite-Hosted_REE_Deposit_Namibia
- https://www.researchgate.net/publication/338296843_Use_of_the_Sentinel-2A_Multispectral_Image_for_Litho-Structural_and_Alteration_Mapping_in_Al_Glo'a_Map_Sheet_150000_Bou_Azzer-El_Graara_Inlier_Central_Anti-Atlas_Morocco
브라질
- https://www.researchgate.net/publication/287950835_Altimetric_and_aeromagnetometric_data_fusion_as_a_tool_of_geological_interpretation_the_example_of_the_Carajas_Mineral_Province_PA
- https://www.researchgate.net/publication/237222985_Analise_e_integracao_de_dados_do_SAR-R99B_com_dados_de_sensoriamento_remoto_optico_e_dados_aerogeofisicos_na_regiao_dos_depositos_de_oxido_de_Fe-Cu-Au_tipo_Sossego_e_118_na_Provincia_Mineral_de_Caraja
- https://www.researchgate.net/publication/327503453_Comparison_of_Altered_Mineral_Information_Extracted_from_ETM_ASTER_and_Hyperion_data_in_Aguas_Claras_Iron_Ore_Brazil
- https://www.researchgate.net/publication/251743903_Enhancement_Of_Landsat_Thematic_Mapper_Imagery_For_Mineral_Prospecting_In_Weathered_And_Vegetated_Terrain_In_SE_Brazil
- https://www.researchgate.net/publication/228854234_Hyperspectral_Data_Processing_For_Mineral_Mapping_Using_AVIRIS_1995_Data_in_Alto_Paraiso_de_Goias_Central_Brazil
- https://www.researchgate.net/publication/326612136_Mapping_Mining_Areas_in_the_Brazilian_Amazon_Using_MSISentinel-2_Imagery_2017
- https://www.researchgate.net/publication/242188704_MINERALOGICAL_CHARACTERIZATION_AND_MAPPING_USING_REFLECTANCE_SPECTROSCOPY_AN_EXPERIMENT_AT_ALTO_DO_GIZ_PEGMATITE_IN_THE_SOUTH_PORTION_OF_BORBOREMA_PEGMATITE_PROVINCE_BPP_NORTHEASTERN_BRAZIL
중국
- https://www.researchgate.net/publication/338355143_A_comprehensive_scheme_for_lithological_mapping_using_Sentinel-2A_and_ASTER_GDEM_in_weathered_and_vegetated_coastal_zone_Southern_China
- https://www.researchgate.net/publication/332957713_Data_mining_of_the_best_spectral_indices_for_geochemical_anomalies_of_copper_A_study_in_the_northwestern_Junggar_region_Xinjiang
- https://www.researchgate.net/publication/380287318_Machine_learning_model_for_deep_exploration_Utilizing_short_wavelength_infrared_SWIR_of_hydrothermal_alteration_minerals_in_the_Qianchen_gold_deposit_Jiaodong_Peninsula_Eastern_China
- https://www.researchgate.net/publication/304906898_Remote_sensing_and_GIS_prospectivity_mapping_for_magmatic-hydrothermal_base-_and_precious-metal_deposits_in_the_Honghai_district_China
그린란드
- https://www.researchgate.net/publication/326655551_Application_of_Multi-Sensor_Satellite_Data_for_Exploration_of_Zn-Pb_Sulfide_Mineralization_in_the_Franklinian_Basin_North_Greenland
- https://www.researchgate.net/publication/337512735_Fusion_of_DPCA_and_ICA_algorithms_for_mineral_detection_using_Landsat-8_spectral_bands
- https://www.researchgate.net/publication/336684298_Landsat-8_Advanced_Spaceborne_Thermal_Emission_and_Reflection_Radiometer_and_WorldView-3_Multispectral_Satellite_Imagery_for_Prospecting_Copper-Gold_Mineralization_in_the_Northeastern_Inglefield_Mobil
인도
- https://www.researchgate.net/publication/337649256_Automated_lithological_mapping_by_integrating_spectral_enhancement_techniques_and_machine_learning_algorithms_using_AVIRIS-NG_hyperspectral_data_in_Gold-bearing_granite-greenstone_rocks_in_Hutti_India
- https://www.researchgate.net/publication/333816841_Integrated_application_of_AVIRIS-NG_and_Sentinel-2A_dataset_in_altered_mineral_abundance_mapping_A_case_study_from_Jahazpur_area_Rajasthan
- https://www.researchgate.net/publication/339631389_Identification_and_characterization_of_hydrothermally_altered_minerals_using_surface_and_space-based_reflectance_spectroscopy_in_parts_of_south-eastern_Rajasthan_India
- https://www.researchgate.net/publication/338116272_Potential_Use_of_ASTER_Derived_Emissivity_Thermal_Inertia_and_Albedo_Image_for_Discriminating_Different_Rock_Types_of_Aravalli_Group_of_Rocks_Rajasthan
이란
- https://www.researchgate.net/publication/338336181_A_Remote_Sensing-Based_Application_of_Bayesian_Networks_for_Epithermal_Gold_Potential_Mapping_in_Ahar-Arasbaran_Area_NW_Iran
- https://www.researchgate.net/publication/338371376_Accuracy_assessment_of_hydrothermal_mineral_maps_derived_from_ASTER_images
- https://www.researchgate.net/publication/340606566_Application_of_Landsat-8_Sentinel-2_ASTER_and_WorldView-3_Spectral_Imagery_for_Exploration_of_Carbonate-Hosted_Pb-Zn_Deposits_in_the_Central_Iranian_Terrane_CIT
- https://www.researchgate.net/publication/331428927_Comparison_of_Different_Algorithms_to_Map_Hydrothermal_Alteration_Zones_Using_ASTER_Remote_Sensing_Data_for_Polymetallic_Vein-Type_Ore_Exploration_Toroud-Chahshirin_Magmatic_Belt_TCMB_North_Iran
- https://www.researchgate.net/publication/327832371_Band_Ratios_Matrix_Transformation_BRMT_A_Sedimentary_Lithology_Mapping_Approach_Using_ASTER_Satellite_Sensor
- https://www.researchgate.net/publication/331314687_Lithological_mapping_in_Sangan_region_in_Northeast_Iran_using_ASTER_satellite_data_and_image_processing_methods
- https://www.researchgate.net/publication/330774780_Mapping_hydrothermal_alteration_zones_and_lineaments_associated_with_orogenic_gold_mineralization_using_ASTER_data_A_case_study_from_the_Sanandaj-Sirjan_Zone_Iran
- https://www.researchgate.net/publication/380812370_Optimization_of_machine_learning_algorithms_for_remote_alteration_mapping
- https://www.researchgate.net/publication/362620968_Spatial_mapping_of_hydrothermal_alterations_and_structural_features_for_gold_and_cassiterite_exploration
페루
- https://www.researchgate.net/publication/271714561_Geology_and_Hydrothermal_Alteration_of_the_Chapi_Chiara_Prospect_and_Nearby_Targets_Southern_Peru_Using_ASTER_Data_and_Reflectance_Spectroscopy
- https://www.researchgate.net/publication/317141295_Hyperspectral_remote_sensing_applied_to_mineral_exploration_in_southern_Peru_A_multiple_data_integration_approach_in_the_Chapi_Chiara_gold_prospect
스페인
- https://www.researchgate.net/publication/233039694_Geological_mapping_using_Landsat_Thematic_Mapper_imagery_in_Almeria_Province_south-east_Spain
- https://www.researchgate.net/publication/263542786_WEIGHTS_DERIVED_FROM_HYPERSPECTRAL_DATA_TO_FACILITATE_AN_OPTIMAL_FIELD_SAMPLING_SCHEME_FOR_POTENTIAL_MINERALS
다른
https://www.researchgate.net/publication/341611032_ASTER_spectral_band_ratios_for_lithological_mapping_A_case_study_for_measuring_geological_offset_along_the_Erkenek_Segment_of_the_East_Anatolian_Fault_Zone_Turkey
https://www.researchgate.net/publication/229383008_Hydrothermal_Alteration_Mapping_at_Bodie_California_using_AVIRIS_Hyperspectral_Data
https://www.researchgate.net/publication/332737573_Identification_of_alteration_zones_using_a_Landsat_8_image_of_densely_vegetated_areas_of_the_Wayang_Windu_Geothermal_field_West_Java_Indonesia
https://www.researchgate.net/publication/325137721_Interpretation_of_surface_geochemical_data_and_integration_with_geological_maps_and_Landsat-TM_images_for_mineral_exploration_from_a_portion_of_the_precambrian_of_Uruguay
https://www.researchgate.net/publication/336684298_Landsat-8_Advanced_Spaceborne_Thermal_Emission_and_Reflection_Radiometer_and_WorldView-3_Multispectral_Satellite_Imagery_for_Prospecting_Copper-Gold_Mineralization_in_the_Northeastern_Inglefield_Mobil
https://www.researchgate.net/publication/304036250_Mineral_Exploration_for_Epithermal_Gold_in_Northern_Patagonia_Argentina_From_Regional-_to_Deposit-Scale_Prospecting_Using_Landsat_TM_and_Terra_ASTER
https://www.researchgate.net/publication/340652300_New_logical_operator_algorithms_for_mapping_of_hydrothermally_altered_rocks_using_ASTER_data_A_case_study_from_central_Turkey
https://www.researchgate.net/publication/324938267_Regional_geology_mapping_using_satellite-based_remote_sensing_approach_in_Northern_Victoria_Land_Antarctica
https://www.researchgate.net/publication/379960654_From_sensor_fusion_to_knowledge_distillation_in_collaborative_LIBS_and_hyperspectral_imaging_for_mineral_identification
NLP
- https://ieeexplore.ieee.org/abstract/document/10544642 -> Assessing named entity recognition efficacy using diverse geoscience datasets [UNSEEN]
- https://link.springer.com/article/10.1007/s12371-024-01011-2 -> Can AI Get a Degree in Geoscience? Performance Analysis of a GPT-Based Artificial Intelligence System Trained for Earth Science (GeologyOracle)
- https://www.researchgate.net/publication/376671309_Enhancing_knowledge_discovery_from_unstructured_data_using_a_deep_learning_approach_to_support_subsurface_modeling_predictions
- https://www.mdpi.com/2220-9964/13/7/260 -> Extracting Geoscientific Dataset Names from the Literature Based on the Hierarchical Temporal Memory Model
- https://www.sciencedirect.com/science/article/pii/S0169136824002154 -> Three-dimensional mineral prospectivity mapping based on natural language processing and random forests: A case study of the Xiyu diamond deposit, China
법학대학원
- https://arxiv.org/pdf/2401.16822 - EarthGPT: A Universal Multi-modal Large Language Model for Multi-sensor Image Comprehension in Remote Sensing Domain
- https://link.springer.com/article/10.1007/s12371-024-01011-2 -> Can AI Get a Degree in Geoscience? Performance Analysis of a GPT-Based Artificial Intelligence System Trained for Earth Science (GeologyOracle)
- Geology Oracle web prototype - https://geologyoracle.com/ask-the-geologyoracle/
General-Interest
- https://arxiv.org/abs/2404.05746v1 -> Causality for Earth Science -- A Review on Time-series and Spatiotemporal Causality Methods
- https://www.researchgate.net/publication/384137154_Guidelines_for_Sensitivity_Analyses_in_Process_Simulations_for_Solid_Earth_Geosciences
- https://www.mdpi.com/1660-4601/18/18/9752 -> Learning and Expertise in Mineral Exploration Decision-Making: An Ecological Dynamics Perspective
- https://www.sciencedirect.com/science/article/pii/S2214629624001476 -> Mapping critical minerals projects and their intersection with Indigenous peoples' land rights in Australia
- https://www.sciencedirect.com/science/article/pii/S0169136824003470 -> Overcoming survival bias in targeting mineral deposits of the future: Towards null and negative tests of the exploration search space, accounting for lack of visibility
- https://www.sciencedirect.com/science/article/pii/S088329272400115X - > Ranking Mineral Exploration Targets in Support of Commercial Decision Making: A Key Component for Inclusion in an Exploration Information System
딥러닝
- https://arxiv.org/abs/2408.11804 -> Approaching Deep Learning through the Spectral Dynamics of Weights
- https://arxiv.org/pdf/2310.19909.pdf -> Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
- https://pure.mpg.de/rest/items/item_3029184_8/component/file_3282959/content -> Deep learning and process understanding for data-driven Earth system science
- https://www.tandfonline.com/doi/pdf/10.1080/17538947.2024.2391952 -> Deep learning for spatiotemporal forecasting in Earth system science: a review
- https://wires.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/widm.1554 -> From 3D point-cloud data to explainable geometric deep learning: State-of-the-art and future challenges
- https://arxiv.org/pdf/2410.16602 -> Foundation Models for Remote Sensing and Earth Observation: A Survey
- https://www.nature.com/articles/s41467-021-24025-8 -> Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
- https://arxiv.org/abs/2404.07738 ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models
- https://ieeexplore.ieee.org/abstract/document/10605826 -> Swin-CDSA: The Semantic Segmentation of Remote Sensing Images Based on Cascaded Depthwise Convolution and Spatial Attention Mechanism
- https://www.sciencedirect.com/science/article/abs/pii/S0098300424000839#sec6 -> Leveraging automated deep learning (AutoDL) in geosciences