transformer in transformer
0.1.2
Implementação do Transformer no Transformer, atenção no nível de pixel emparelhada com atenção no nível de patch para classificação de imagens, em Pytorch.
AI Coffee Break com Letitia
$ pip install transformer-in-transformer
import torch
from transformer_in_transformer import TNT
tnt = TNT (
image_size = 256 , # size of image
patch_dim = 512 , # dimension of patch token
pixel_dim = 24 , # dimension of pixel token
patch_size = 16 , # patch size
pixel_size = 4 , # pixel size
depth = 6 , # depth
num_classes = 1000 , # output number of classes
attn_dropout = 0.1 , # attention dropout
ff_dropout = 0.1 # feedforward dropout
)
img = torch . randn ( 2 , 3 , 256 , 256 )
logits = tnt ( img ) # (2, 1000)
@misc { han2021transformer ,
title = { Transformer in Transformer } ,
author = { Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang } ,
year = { 2021 } ,
eprint = { 2103.00112 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}