高效的 LoFTR:具有稀疏速度的半密集局部特征匹配
王一凡* 、何兴一* 、彭斯达、谭东丽、周小伟
CVPR 2024
conda env create -f environment.yaml
conda activate eloftr
pip install torch==2.0.0+cu118 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
测试和训练可以通过LoFTR提供的下载链接下载
我们在下载链接中提供了我们的预训练模型
您需要首先设置 ScanNet 和 MegaDepth 的测试子集。我们创建从之前下载的数据集到data/{{dataset}}/test
符号链接。
# set up symlinks
ln -s /path/to/scannet-1500-testset/ * /path/to/EfficientLoFTR/data/scannet/test
ln -s /path/to/megadepth-1500-testset/ * /path/to/EfficientLoFTR/data/megadepth/test
conda activate eloftr
bash scripts/reproduce_test/indoor_full_time.sh
bash scripts/reproduce_test/indoor_opt_time.sh
conda activate eloftr
bash scripts/reproduce_test/outdoor_full_auc.sh
bash scripts/reproduce_test/outdoor_opt_auc.sh
bash scripts/reproduce_test/indoor_full_auc.sh
bash scripts/reproduce_test/indoor_opt_auc.sh
conda env create -f environment_training.yaml # used a different version of pytorch, maybe slightly different from the inference environment
pip install -r requirements.txt
conda activate eloftr_training
bash scripts/reproduce_train/eloftr_outdoor.sh eloftr_outdoor
如果您发现此代码对您的研究有用,请使用以下 BibTeX 条目。
@inproceedings { wang2024eloftr ,
title = { {Efficient LoFTR}: Semi-Dense Local Feature Matching with Sparse-Like Speed } ,
author = { Wang, Yifan and He, Xingyi and Peng, Sida and Tan, Dongli and Zhou, Xiaowei } ,
booktitle = { CVPR } ,
year = { 2024 }
}