如何使用OpenAIS耳语转录和诊断音频文件
Whisper是OpenAI的最先进的语音识别系统,已接受了从网络收集的680,000小时的多语言和多任务监督数据的培训。这个大型多样的数据集可改善对重音,背景噪音和技术语言的鲁棒性。此外,它可以用多种语言进行转录,并从这些语言转换为英语。 Openai发布了模型和代码,以作为构建利用语音识别的有用应用的基础。
不过,耳语的一个很大的缺点是,它无法告诉您谁在谈话中说话。分析对话时,这是一个问题。这是诊断的地方。诊断是识别在对话中说话的过程。
在本教程中,您将学习如何识别说话者,然后将其与耳语的抄录匹配。我们将使用pyannote-audio
来实现这一目标。让我们开始吧!
首先,我们需要准备音频文件。我们将使用Yann下载的Lex Fridmans播客的前20分钟。要下载视频并提取音频,我们将使用yt-dlp
软件包。
! pip install -U yt-dlp
我们还需要安装FFMPEG
! wget -O - -q https://github.com/yt-dlp/FFmpeg-Builds/releases/download/latest/ffmpeg-master-latest-linux64-gpl.tar.xz | xz -qdc | tar -x
现在,我们可以通过命令行进行实际下载和音频提取。
! yt-dlp -xv --ffmpeg-location ffmpeg-master-latest-linux64-gpl/bin --audio-format wav -o download.wav -- https://youtu.be/SGzMElJ11Cc
现在,我们的工作目录中有download.wav
文件。让我们剪切音频的前20分钟。我们只需几行代码即可使用PYDUB软件包。
! pip install pydub
from pydub import AudioSegment
t1 = 0 * 1000 # works in milliseconds
t2 = 20 * 60 * 1000
newAudio = AudioSegment . from_wav ( "download.wav" )
a = newAudio [ t1 : t2 ]
a . export ( "audio.wav" , format = "wav" )
audio.wav
现在是音频文件的前20分钟。
pyannote.audio
是用Python编写的用于说话者诊断的开源工具包。基于Pytorch机器学习框架,它提供了一组可训练的端到端神经构建块,可以将其组合并共同优化以构建扬声器诊断管道。 pyannote.audio
还介绍了验证的模型和管道,涵盖了各种域,用于语音活动检测,扬声器细分,重叠的语音检测,扬声器嵌入了大多数人的最先进性能。
安装pyannote并将其运行在视频音频上以生成腹泻。
! pip install pyannote.audio
from pyannote . audio import Pipeline
pipeline = Pipeline . from_pretrained ( 'pyannote/speaker-diarization' )
DEMO_FILE = { 'uri' : 'blabal' , 'audio' : 'audio.wav' }
dz = pipeline ( DEMO_FILE )
with open ( "diarization.txt" , "w" ) as text_file :
text_file . write ( str ( dz ))
让我们打印出来,看看它的外观。
print(*list(dz.itertracks(yield_label = True))[:10], sep="n")
输出:
(<Segment(2.03344, 36.8128)>, 0, 'SPEAKER_00')
(<Segment(38.1122, 51.3759)>, 0, 'SPEAKER_00')
(<Segment(51.8653, 90.2053)>, 1, 'SPEAKER_01')
(<Segment(91.2853, 92.9391)>, 1, 'SPEAKER_01')
(<Segment(94.8628, 116.497)>, 0, 'SPEAKER_00')
(<Segment(116.497, 124.124)>, 1, 'SPEAKER_01')
(<Segment(124.192, 151.597)>, 1, 'SPEAKER_01')
(<Segment(152.018, 179.12)>, 1, 'SPEAKER_01')
(<Segment(180.318, 194.037)>, 1, 'SPEAKER_01')
(<Segment(195.016, 207.385)>, 0, 'SPEAKER_00')
这看起来已经很好,但是让我们清理一些数据:
def millisec ( timeStr ):
spl = timeStr . split ( ":" )
s = ( int )(( int ( spl [ 0 ]) * 60 * 60 + int ( spl [ 1 ]) * 60 + float ( spl [ 2 ]) ) * 1000 )
return s
import re
dz = open ( 'diarization.txt' ). read (). splitlines ()
dzList = []
for l in dz :
start , end = tuple ( re . findall ( '[0-9]+:[0-9]+:[0-9]+.[0-9]+' , string = l ))
start = millisec ( start ) - spacermilli
end = millisec ( end ) - spacermilli
lex = not re . findall ( 'SPEAKER_01' , string = l )
dzList . append ([ start , end , lex ])
print ( * dzList [: 10 ], sep = ' n ' )
[33, 34812, True]
[36112, 49375, True]
[49865, 88205, False]
[89285, 90939, False]
[92862, 114496, True]
[114496, 122124, False]
[122191, 149596, False]
[150018, 177119, False]
[178317, 192037, False]
[193015, 205385, True]
现在,我们在列表中有诊断数据。前两个数字是毫秒毫秒的扬声器段的开始和结束时间。第三个数字是一个布尔值,告诉我们说话者是否是Lex。
接下来,我们将根据诊断将音频段连接起来,并将隔离剂作为定界符。
from pydub import AudioSegment
import re
sounds = spacer
segments = []
dz = open ( 'diarization.txt' ). read (). splitlines ()
for l in dz :
start , end = tuple ( re . findall ( '[0-9]+:[0-9]+:[0-9]+.[0-9]+' , string = l ))
start = int ( millisec ( start )) #milliseconds
end = int ( millisec ( end )) #milliseconds
segments . append ( len ( sounds ))
sounds = sounds . append ( audio [ start : end ], crossfade = 0 )
sounds = sounds . append ( spacer , crossfade = 0 )
sounds . export ( "dz.wav" , format = "wav" ) #Exports to a wav file in the current path.
print ( segments [: 8 ])
[2000, 38779, 54042, 94382, 98036, 121670, 131297, 160702]
接下来,我们将使用窃窃私语来抄录音频文件的不同段。重要的是:与pyannote.audio发生的版本冲突导致错误。我们的解决方法是首先运行Pyannote,然后小声说。您可以安全地忽略错误。
安装打开AI耳语。
! pip install git+https://github.com/openai/whisper.git
在准备好的音频文件上打开AI窃窃私语。它将转录写入文件中。您可以根据自己的需求调整模型大小。您可以在GitHub上的型号卡上找到所有型号。
! whisper dz.wav --language en --model base
[00:00.000 --> 00:04.720] The following is a conversation with Yann LeCun,
[00:04.720 --> 00:06.560] his second time on the podcast.
[00:06.560 --> 00:11.160] He is the chief AI scientist at Meta, formerly Facebook,
[00:11.160 --> 00:15.040] professor at NYU, touring award winner,
[00:15.040 --> 00:17.600] one of the seminal figures in the history
[00:17.600 --> 00:20.460] of machine learning and artificial intelligence,
...
为了使用.VTT文件,我们需要安装WebVtt-PY库。
! pip install -U webvtt-py
让我们看一下数据:
import webvtt
captions = [[( int )( millisec ( caption . start )), ( int )( millisec ( caption . end )), caption . text ] for caption in webvtt . read ( 'dz.wav.vtt' )]
print ( * captions [: 8 ], sep = ' n ' )
[0, 4720, 'The following is a conversation with Yann LeCun,']
[4720, 6560, 'his second time on the podcast.']
[6560, 11160, 'He is the chief AI scientist at Meta, formerly Facebook,']
[11160, 15040, 'professor at NYU, touring award winner,']
[15040, 17600, 'one of the seminal figures in the history']
[17600, 20460, 'of machine learning and artificial intelligence,']
[20460, 23940, 'and someone who is brilliant and opinionated']
[23940, 25400, 'in the best kind of way,']
...
接下来,我们将每条转录行与某些诊断匹配,并通过生成HTML文件来显示所有内容。为了获得正确的时机,我们应该照顾原始音频中没有诊断段的零件。我们为音频中的每个细分市场附加了一个新的DIV。
# we need this fore our HTML file (basicly just some styling)
preS = '<!DOCTYPE html>n<html lang="en">n <head>n <meta charset="UTF-8">n <meta name="viewport" content="width=device-width, initial-scale=1.0">n <meta http-equiv="X-UA-Compatible" content="ie=edge">n <title>Lexicap</title>n <style>n body {n font-family: sans-serif;n font-size: 18px;n color: #111;n padding: 0 0 1em 0;n }n .l {n color: #050;n }n .s {n display: inline-block;n }n .e {n display: inline-block;n }n .t {n display: inline-block;n }n #player {nttposition: sticky;ntttop: 20px;nttfloat: right;nt}n </style>n </head>n <body>n <h2>Yann LeCun: Dark Matter of Intelligence and Self-Supervised Learning | Lex Fridman Podcast #258</h2>n <div id="player"></div>n <script>n var tag = document.createElement('script');n tag.src = "https://www.youtube.com/iframe_api";n var firstScriptTag = document.getElementsByTagName('script')[0];n firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);n var player;n function onYouTubeIframeAPIReady() {n player = new YT.Player('player', {n height: '210',n width: '340',n videoId: 'SGzMElJ11Cc',n });n }n function setCurrentTime(timepoint) {n player.seekTo(timepoint);n player.playVideo();n }n </script><br>n'
postS = 't</body>n</html>'
from datetime import timedelta
html = list(preS)
for i in range(len(segments)):
idx = 0
for idx in range(len(captions)):
if captions[idx][0] >= (segments[i] - spacermilli):
break;
while (idx < (len(captions))) and ((i == len(segments) - 1) or (captions[idx][1] < segments[i+1])):
c = captions[idx]
start = dzList[i][0] + (c[0] -segments[i])
if start < 0:
start = 0
idx += 1
start = start / 1000.0
startStr = '{0:02d}:{1:02d}:{2:02.2f}'.format((int)(start // 3600),
(int)(start % 3600 // 60),
start % 60)
html.append('ttt<div class="c">n')
html.append(f'tttt<a class="l" href="#{startStr}" id="{startStr}">link</a> |n')
html.append(f'tttt<div class="s"><a href="javascript:void(0);" onclick=setCurrentTime({int(start)})>{startStr}</a></div>n')
html.append(f'tttt<div class="t">{"[Lex]" if dzList[i][2] else "[Yann]"} {c[2]}</div>n')
html.append('ttt</div>nn')
html.append(postS)
s = "".join(html)
with open("lexicap.html", "w") as text_file:
text_file.write(s)
print(s)
在Lablab Discord上,我们讨论了此回购以及与人工智能有关的许多其他主题!结帐即将举行的人工智能黑客马拉松活动