ai21 tokenizer
v0.12.0
基於 SentencePiece 的分詞器,用於 AI21 模型的生產使用
Jamba 1.5 Mini
或Jamba 1.5 Large
的標記器,您將需要請求存取相關模型的 HuggingFace 儲存庫:pip install ai21-tokenizer
poetry add ai21-tokenizer
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = Tokenizer . get_tokenizer ( PreTrainedTokenizers . JAMBA_1_5_MINI_TOKENIZER )
# Your code here
另一種方法是直接使用我們的 Jamba 1.5 Mini tokenizer:
from ai21_tokenizer import Jamba1_5Tokenizer
model_path = "<Path to your vocabs file>"
tokenizer = Jamba1_5Tokenizer ( model_path = model_path )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = await Tokenizer . get_async_tokenizer ( PreTrainedTokenizers . JAMBA_1_5_MINI_TOKENIZER )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = Tokenizer . get_tokenizer ( PreTrainedTokenizers . JAMBA_1_5_LARGE_TOKENIZER )
# Your code here
另一種方法是直接使用我們的 Jamba 1.5 Large tokenizer:
from ai21_tokenizer import Jamba1_5Tokenizer
model_path = "<Path to your vocabs file>"
tokenizer = Jamba1_5Tokenizer ( model_path = model_path )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = await Tokenizer . get_async_tokenizer ( PreTrainedTokenizers . JAMBA_1_5_LARGE_TOKENIZER )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = Tokenizer . get_tokenizer ( PreTrainedTokenizers . JAMBA_INSTRUCT_TOKENIZER )
# Your code here
另一種方法是直接使用我們的 Jamba 標記器:
from ai21_tokenizer import JambaInstructTokenizer
model_path = "<Path to your vocabs file>"
tokenizer = JambaInstructTokenizer ( model_path = model_path )
# Your code here
from ai21_tokenizer import Tokenizer , PreTrainedTokenizers
tokenizer = await Tokenizer . get_async_tokenizer ( PreTrainedTokenizers . JAMBA_INSTRUCT_TOKENIZER )
# Your code here
另一種方法是使用我們的非同步 Jamba tokenizer 類別方法 create:
from ai21_tokenizer import AsyncJambaInstructTokenizer
model_path = "<Path to your vocabs file>"
tokenizer = AsyncJambaInstructTokenizer . create ( model_path = model_path )
# Your code here
from ai21_tokenizer import Tokenizer
tokenizer = Tokenizer . get_tokenizer ()
# Your code here
另一種方法是直接使用我們的侏羅紀模型:
from ai21_tokenizer import JurassicTokenizer
model_path = "<Path to your vocabs file. This is usually a binary file that end with .model>"
config = {} # "dictionary object of your config.json file"
tokenizer = JurassicTokenizer ( model_path = model_path , config = config )
from ai21_tokenizer import Tokenizer
tokenizer = await Tokenizer . get_async_tokenizer ()
# Your code here
另一種方法是使用我們的非同步 Jamba tokenizer 類別方法 create:
from ai21_tokenizer import AsyncJurassicTokenizer
model_path = "<Path to your vocabs file. This is usually a binary file that end with .model>"
config = {} # "dictionary object of your config.json file"
tokenizer = AsyncJurassicTokenizer . create ( model_path = model_path , config = config )
# Your code here
這些函數可讓您將文字編碼為令牌 ID 清單並傳回明文
text_to_encode = "apple orange banana"
encoded_text = tokenizer . encode ( text_to_encode )
print ( f"Encoded text: { encoded_text } " )
decoded_text = tokenizer . decode ( encoded_text )
print ( f"Decoded text: { decoded_text } " )
# Assuming you have created an async tokenizer
text_to_encode = "apple orange banana"
encoded_text = await tokenizer . encode ( text_to_encode )
print ( f"Encoded text: { encoded_text } " )
decoded_text = await tokenizer . decode ( encoded_text )
print ( f"Decoded text: { decoded_text } " )
tokens = tokenizer . convert_ids_to_tokens ( encoded_text )
print ( f"IDs corresponds to Tokens: { tokens } " )
ids = tokenizer . convert_tokens_to_ids ( tokens )
# Assuming you have created an async tokenizer
tokens = await tokenizer . convert_ids_to_tokens ( encoded_text )
print ( f"IDs corresponds to Tokens: { tokens } " )
ids = tokenizer . convert_tokens_to_ids ( tokens )
有關更多範例,請參閱我們的範例資料夾。