這些是 AlphaCore KDD 論文的補充文件。
在打包之前,取得文件演算法/alphaCore.R
g <- erdos.renyi.game(200, 2/200, directed = T)
E(g)$weight <- 1:ecount(g)
V(g)$name <- paste("v", 1:vcount(g), sep="")
> alphaCore(g)
node alpha batch
1: v1 0.3281309 19
2: v2 0.3281309 30
3: v3 0.3724843 34
4: v4 0.3281309 23
5: v5 0.3281309 19
---
196: v196 0.3281309 28
197: v197 0.0000000 1
198: v198 0.3724843 34
199: v199 0.3281309 23
200: v200 0.3281309 23
> alphaCore(g, featureComputeFun = customNodeFeatures(c("indegree", "triangles")))
node alpha batch
1: v1 0.3060040 14
2: v2 0.0000000 6
3: v3 0.0000000 5
4: v4 0.0000000 5
5: v5 0.0000000 6
---
196: v196 0.6381691 19
197: v197 0.0000000 5
198: v198 0.0000000 5
199: v199 0.6381691 19
200: v200 0.0000000 8
> import networkx as nx
> G = nx.erdos_renyi_graph(n=200, seed=1, p=2/200, directed=True)
> for idx, (u,v,w) in enumerate(G.edges(data=True)):
w['value'] = idx
> alphaCore(G)
nodeID alpha batchID
0 18 0.0 0
1 75 0.0 0
2 78 0.0 0
3 25 0.3 5
4 91 0.3 5
... ... ... ...
195 8 0.7 27
196 131 0.7 27
197 185 0.7 27
198 192 0.7 27
199 158 0.7 28
為了運行,您首先需要下載三個資料集:
這些檔案託管在:https://zenodo.org/record/4898412 將transfers.db儲存在data/tokens/transfers.db中 相符的exchangeLabels.csv檔案應放置在data/tokens/exchangeLabels.csv
reddit 交叉連結是 http://snap.stanford.edu/conflict/conflict_data.zip 的一部分 在 zip 檔案中,可以在 /prediction/detailed_data/ 中找到它們 將檔案放在位置 data/reddit/post_crosslinks_info.tsv
從 http://opsahl.co.uk/tnet/datasets/openflights.txt 取得此檔案並將其儲存在 data/flights/openflights.txt 中。
從主目錄開啟檔案valuation.R。
這是運行評估的主文件。輸入您的 CPU 核心數以及提取的資料庫檔案的路徑。
要執行整個評估,最好在具有 Rscript 的伺服器上進行,因為某些演算法(即依賴所有對最短路徑計算的某些中心性)以及我們自己的加權 k 核實現具有非常長的運行時間。完整執行需要 1-3 天,具體取決於硬體。
然而,具有指數衰減步長的 AlphaCore 速度相當快,儘管它只是一個 R 實現。
請使用以下 BibTeX 條目:
@inproceedings{10.1145/3447548.3467322,
author = {Victor, Friedhelm and Akcora, Cuneyt G. and Gel, Yulia R. and Kantarcioglu, Murat},
title = {Alphacore: Data Depth Based Core Decomposition},
year = {2021},
isbn = {9781450383325},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3447548.3467322},
doi = {10.1145/3447548.3467322},
booktitle = {Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining},
pages = {1625–1633},
numpages = {9},
keywords = {core decomposition, networks, data depth},
location = {Virtual Event, Singapore},
series = {KDD '21}
}