nuwa pytorch
0.7.8
在 Pytorch 中實現 NÜWA,這是用於文字到視訊合成的最先進的注意力網路。它還包含使用雙解碼器方法的視訊和音訊生成的擴充。
雅尼克·基爾徹
深度閱讀器
2022 年 3 月 - 透過難度版本的行動 mnist 看到生命的跡象
2022 年 4 月 - 似乎基於擴散的方法已經佔據了 SOTA 的新王座。不過,我將繼續使用 NUWA,將其擴展為使用多頭代碼 + 分層因果變換器。我認為這個方向尚未開發用於改進這方面的工作。
$ pip install nuwa-pytorch
先訓練 VAE
import torch
from nuwa_pytorch import VQGanVAE
vae = VQGanVAE (
dim = 512 ,
channels = 3 , # default is 3, but can be changed to any value for the training of the segmentation masks (sketches)
image_size = 256 , # image size
num_layers = 4 , # number of downsampling layers
num_resnet_blocks = 2 , # number of resnet blocks
vq_codebook_size = 8192 , # codebook size
vq_decay = 0.8 # codebook exponential decay
)
imgs = torch . randn ( 10 , 3 , 256 , 256 )
# alternate learning for autoencoder ...
loss = vae ( imgs , return_loss = True )
loss . backward ()
# and the discriminator ...
discr_loss = vae ( imgs , return_discr_loss = True )
discr_loss . backward ()
# do above for many steps
# return reconstructed images and make sure they look ok
recon_imgs = vae ( imgs )
然後,用你學到的 VAE
import torch
from nuwa_pytorch import NUWA , VQGanVAE
# autoencoder
vae = VQGanVAE (
dim = 64 ,
num_layers = 4 ,
image_size = 256 ,
num_conv_blocks = 2 ,
vq_codebook_size = 8192
)
# NUWA transformer
nuwa = NUWA (
vae = vae ,
dim = 512 ,
text_num_tokens = 20000 , # number of text tokens
text_enc_depth = 12 , # text encoder depth
text_enc_heads = 8 , # number of attention heads for encoder
text_max_seq_len = 256 , # max sequence length of text conditioning tokens (keep at 256 as in paper, or shorter, if your text is not that long)
max_video_frames = 10 , # number of video frames
image_size = 256 , # size of each frame of video
dec_depth = 64 , # video decoder depth
dec_heads = 8 , # number of attention heads in decoder
dec_reversible = True , # reversible networks - from reformer, decoupling memory usage from depth
enc_reversible = True , # reversible encoders, if you need it
attn_dropout = 0.05 , # dropout for attention
ff_dropout = 0.05 , # dropout for feedforward
sparse_3dna_kernel_size = ( 5 , 3 , 3 ), # kernel size of the sparse 3dna attention. can be a single value for frame, height, width, or different values (to simulate axial attention, etc)
sparse_3dna_dilation = ( 1 , 2 , 4 ), # cycle dilation of 3d conv attention in decoder, for more range
shift_video_tokens = True # cheap relative positions for sparse 3dna transformer, by shifting along spatial dimensions by one
). cuda ()
# data
text = torch . randint ( 0 , 20000 , ( 1 , 256 )). cuda ()
video = torch . randn ( 1 , 10 , 3 , 256 , 256 ). cuda () # (batch, frames, channels, height, width)
loss = nuwa (
text = text ,
video = video ,
return_loss = True # set this to True, only for training, to return cross entropy loss
)
loss . backward ()
# do above with as much data as possible
# then you can generate a video from text
video = nuwa . generate ( text = text , num_frames = 5 ) # (1, 5, 3, 256, 256)
在論文中,他們也提出了一種基於分割掩模來調節視訊生成的方法。如果您事先在草圖上訓練了VQGanVAE
,您也可以輕鬆做到這一點。
然後,您將使用NUWASketch
而不是NUWA
,它可以接受草圖 VAE 作為參考
前任。
import torch
from nuwa_pytorch import NUWASketch , VQGanVAE
# autoencoder, one for main video, the other for the sketch
vae = VQGanVAE (
dim = 64 ,
num_layers = 4 ,
image_size = 256 ,
num_conv_blocks = 2 ,
vq_codebook_size = 8192
)
sketch_vae = VQGanVAE (
dim = 512 ,
channels = 5 , # say the sketch has 5 classes
num_layers = 4 ,
image_size = 256 ,
num_conv_blocks = 2 ,
vq_codebook_size = 8192
)
# NUWA transformer for conditioning with sketches
nuwa = NUWASketch (
vae = vae ,
sketch_vae = sketch_vae ,
dim = 512 , # model dimensions
sketch_enc_depth = 12 , # sketch encoder depth
sketch_enc_heads = 8 , # number of attention heads for sketch encoder
sketch_max_video_frames = 3 , # max number of frames for sketches
sketch_enc_use_sparse_3dna = True , # whether to use 3d-nearby attention (of full attention if False) for sketch encoding transformer
max_video_frames = 10 , # number of video frames
image_size = 256 , # size of each frame of video
dec_depth = 64 , # video decoder depth
dec_heads = 8 , # number of attention heads in decoder
dec_reversible = True , # reversible networks - from reformer, decoupling memory usage from depth
enc_reversible = True , # reversible encoders, if you need it
attn_dropout = 0.05 , # dropout for attention
ff_dropout = 0.05 , # dropout for feedforward
sparse_3dna_kernel_size = ( 5 , 3 , 3 ), # kernel size of the sparse 3dna attention. can be a single value for frame, height, width, or different values (to simulate axial attention, etc)
sparse_3dna_dilation = ( 1 , 2 , 4 ), # cycle dilation of 3d conv attention in decoder, for more range
cross_2dna_kernel_size = 5 , # 2d kernel size of spatial grouping of attention from video frames to sketches
cross_2dna_dilation = 1 , # 2d dilation of spatial attention from video frames to sketches
shift_video_tokens = True # cheap relative positions for sparse 3dna transformer, by shifting along spatial dimensions by one
). cuda ()
# data
sketch = torch . randn ( 2 , 2 , 5 , 256 , 256 ). cuda () # (batch, frames, segmentation classes, height, width)
sketch_mask = torch . ones ( 2 , 2 ). bool (). cuda () # (batch, frames) [Optional]
video = torch . randn ( 2 , 10 , 3 , 256 , 256 ). cuda () # (batch, frames, channels, height, width)
loss = nuwa (
sketch = sketch ,
sketch_mask = sketch_mask ,
video = video ,
return_loss = True # set this to True, only for training, to return cross entropy loss
)
loss . backward ()
# do above with as much data as possible
# then you can generate a video from sketch(es)
video = nuwa . generate ( sketch = sketch , num_frames = 5 ) # (1, 5, 3, 256, 256)
該存儲庫還將提供可生成視訊和音訊的 NUWA 變體。目前,音訊需要手動編碼。
import torch
from nuwa_pytorch import NUWAVideoAudio , VQGanVAE
# autoencoder
vae = VQGanVAE (
dim = 64 ,
num_layers = 4 ,
image_size = 256 ,
num_conv_blocks = 2 ,
vq_codebook_size = 100
)
# NUWA transformer
nuwa = NUWAVideoAudio (
vae = vae ,
dim = 512 ,
num_audio_tokens = 2048 , # codebook size for audio tokens
num_audio_tokens_per_video_frame = 32 , # number of audio tokens per video frame
cross_modality_attn_every = 3 , # cross modality attention every N layers
text_num_tokens = 20000 , # number of text tokens
text_enc_depth = 1 , # text encoder depth
text_enc_heads = 8 , # number of attention heads for encoder
text_max_seq_len = 256 , # max sequence length of text conditioning tokens (keep at 256 as in paper, or shorter, if your text is not that long)
max_video_frames = 10 , # number of video frames
image_size = 256 , # size of each frame of video
dec_depth = 4 , # video decoder depth
dec_heads = 8 , # number of attention heads in decoder
enc_reversible = True , # reversible encoders, if you need it
dec_reversible = True , # quad-branched reversible network, for making depth of twin video / audio decoder independent of network depth. recommended to be turned on unless you have a ton of memory at your disposal
attn_dropout = 0.05 , # dropout for attention
ff_dropout = 0.05 , # dropout for feedforward
sparse_3dna_kernel_size = ( 5 , 3 , 3 ), # kernel size of the sparse 3dna attention. can be a single value for frame, height, width, or different values (to simulate axial attention, etc)
sparse_3dna_dilation = ( 1 , 2 , 4 ), # cycle dilation of 3d conv attention in decoder, for more range
shift_video_tokens = True # cheap relative positions for sparse 3dna transformer, by shifting along spatial dimensions by one
). cuda ()
# data
text = torch . randint ( 0 , 20000 , ( 1 , 256 )). cuda ()
audio = torch . randint ( 0 , 2048 , ( 1 , 32 * 10 )). cuda () # (batch, audio tokens per frame * max video frames)
video = torch . randn ( 1 , 10 , 3 , 256 , 256 ). cuda () # (batch, frames, channels, height, width)
loss = nuwa (
text = text ,
video = video ,
audio = audio ,
return_loss = True # set this to True, only for training, to return cross entropy loss
)
loss . backward ()
# do above with as much data as possible
# then you can generate a video from text
video , audio = nuwa . generate ( text = text , num_frames = 5 ) # (1, 5, 3, 256, 256), (1, 32 * 5 == 160)
該庫將提供一些實用程式以使培訓變得更容易。對於初學者,您可以使用VQGanVAETrainer
類別來訓練VQGanVAE
。只需包裝模型並傳入圖像資料夾路徑以及各種訓練超參數即可。
import torch
from nuwa_pytorch import VQGanVAE , VQGanVAETrainer
vae = VQGanVAE (
dim = 64 ,
image_size = 256 ,
num_layers = 5 ,
vq_codebook_size = 1024 ,
vq_use_cosine_sim = True ,
vq_codebook_dim = 32 ,
vq_orthogonal_reg_weight = 10 ,
vq_orthogonal_reg_max_codes = 128 ,
). cuda ()
trainer = VQGanVAETrainer (
vae , # VAE defined above
folder = '/path/to/images' , # path to images
lr = 3e-4 , # learning rate
num_train_steps = 100000 , # number of training steps
batch_size = 8 , # batch size
grad_accum_every = 4 # gradient accumulation (effective batch size is (batch_size x grad_accum_every))
)
trainer . train ()
# results and model checkpoints will be saved periodically to ./results
要訓練 NUWA,首先您需要組織一個.gif
檔案資料夾以及包含其標題的相應.txt
檔案。它應該這樣組織。
前任。
video-and-text-data
┣ cat.gif
┣ cat.txt
┣ dog.gif
┣ dog.txt
┣ turtle.gif
┗ turtle.txt
然後,您將載入先前訓練的 VQGan-VAE 並使用GifVideoDataset
和NUWATrainer
類別訓練 NUWA。
import torch
from nuwa_pytorch import NUWA , VQGanVAE
from nuwa_pytorch . train_nuwa import GifVideoDataset , NUWATrainer
# dataset
ds = GifVideoDataset (
folder = './path/to/videos/' ,
channels = 1
)
# autoencoder
vae = VQGanVAE (
dim = 64 ,
image_size = 256 ,
num_layers = 5 ,
num_resnet_blocks = 2 ,
vq_codebook_size = 512 ,
attn_dropout = 0.1
)
vae . load_state_dict ( torch . load ( './path/to/trained/vae.pt' ))
# NUWA transformer
nuwa = NUWA (
vae = vae ,
dim = 512 ,
text_enc_depth = 6 ,
text_max_seq_len = 256 ,
max_video_frames = 10 ,
dec_depth = 12 ,
dec_reversible = True ,
enc_reversible = True ,
attn_dropout = 0.05 ,
ff_dropout = 0.05 ,
sparse_3dna_kernel_size = ( 5 , 3 , 3 ),
sparse_3dna_dilation = ( 1 , 2 , 4 ),
shift_video_tokens = True
). cuda ()
# data
trainer = NUWATrainer (
nuwa = nuwa , # NUWA transformer
dataset = dataset , # video dataset class
num_train_steps = 1000000 , # number of training steps
lr = 3e-4 , # learning rate
wd = 0.01 , # weight decay
batch_size = 8 , # batch size
grad_accum_every = 4 , # gradient accumulation
max_grad_norm = 0.5 , # gradient clipping
num_sampled_frames = 10 , # number of frames to sample
results_folder = './results' # folder to store checkpoints and samples
)
trainer . train ()
該庫依賴該向量量化庫,該庫進行了許多改進(改進的 vqgan、正交碼本正則化等)。要使用這些改進中的任何一項,您可以透過在VQGanVAE
初始化上新增vq_
來配置向量量化器關鍵字參數。
前任。改進的vqgan中提出的cosine sim
from nuwa_pytorch import VQGanVAE
vae = VQGanVAE (
dim = 64 ,
image_size = 256 ,
num_layers = 4 ,
vq_use_cosine_sim = True
# VectorQuantize will be initialized with use_cosine_sim = True
# https://github.com/lucidrains/vector-quantize-pytorch#cosine-similarity
). cuda ()
@misc { wu2021nuwa ,
title = { N"UWA: Visual Synthesis Pre-training for Neural visUal World creAtion } ,
author = { Chenfei Wu and Jian Liang and Lei Ji and Fan Yang and Yuejian Fang and Daxin Jiang and Nan Duan } ,
year = { 2021 } ,
eprint = { 2111.12417 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { esser2021taming ,
title = { Taming Transformers for High-Resolution Image Synthesis } ,
author = { Patrick Esser and Robin Rombach and Björn Ommer } ,
year = { 2021 } ,
eprint = { 2012.09841 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { iashin2021taming ,
title = { Taming Visually Guided Sound Generation } ,
author = { Vladimir Iashin and Esa Rahtu } ,
year = { 2021 } ,
eprint = { 2110.08791 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { ding2021cogview ,
title = { CogView: Mastering Text-to-Image Generation via Transformers } ,
author = { Ming Ding and Zhuoyi Yang and Wenyi Hong and Wendi Zheng and Chang Zhou and Da Yin and Junyang Lin and Xu Zou and Zhou Shao and Hongxia Yang and Jie Tang } ,
year = { 2021 } ,
eprint = { 2105.13290 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { kitaev2020reformer ,
title = { Reformer: The Efficient Transformer } ,
author = { Nikita Kitaev and Łukasz Kaiser and Anselm Levskaya } ,
year = { 2020 } ,
eprint = { 2001.04451 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}
@misc { shazeer2020talkingheads ,
title = { Talking-Heads Attention } ,
author = { Noam Shazeer and Zhenzhong Lan and Youlong Cheng and Nan Ding and Le Hou } ,
year = { 2020 } ,
eprint = { 2003.02436 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.LG }
}
@misc { shazeer2020glu ,
title = { GLU Variants Improve Transformer } ,
author = { Noam Shazeer } ,
year = { 2020 } ,
url = { https://arxiv.org/abs/2002.05202 }
}
@misc { su2021roformer ,
title = { RoFormer: Enhanced Transformer with Rotary Position Embedding } ,
author = { Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu } ,
year = { 2021 } ,
eprint = { 2104.09864 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CL }
}
@inproceedings { ho2021classifierfree ,
title = { Classifier-Free Diffusion Guidance } ,
author = { Jonathan Ho and Tim Salimans } ,
booktitle = { NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications } ,
year = { 2021 } ,
url = { https://openreview.net/forum?id=qw8AKxfYbI }
}
@misc { liu2021swin ,
title = { Swin Transformer V2: Scaling Up Capacity and Resolution } ,
author = { Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo } ,
year = { 2021 } ,
eprint = { 2111.09883 } ,
archivePrefix = { arXiv } ,
primaryClass = { cs.CV }
}
@misc { crowson2022 ,
author = { Katherine Crowson } ,
url = { https://twitter.com/RiversHaveWings/status/1478093658716966912 }
}
關注是最稀有、最純粹的慷慨形式。 ——西蒙娜‧韋爾