Ce référentiel contient des ressources liées aux charges de travail AI/ML sur Google Kubernetes Engine (GKE).
Exécutez des charges de travail IA/ML optimisées grâce aux capacités d'orchestration de la plate-forme Google Kubernetes Engine (GKE). Une plateforme IA/ML robuste prend en compte les couches suivantes :
Les modules d'application AI-on-GKE supposent que vous disposez déjà d'un cluster GKE fonctionnel. Sinon, suivez les instructions sous infrastructure/README.md pour installer un cluster GKE standard ou Autopilot.
.
├── LICENSE
├── README.md
├── infrastructure
│ ├── README.md
│ ├── backend.tf
│ ├── main.tf
│ ├── outputs.tf
│ ├── platform.tfvars
│ ├── variables.tf
│ └── versions.tf
├── modules
│ ├── gke-autopilot-private-cluster
│ ├── gke-autopilot-public-cluster
│ ├── gke-standard-private-cluster
│ ├── gke-standard-public-cluster
│ ├── jupyter
│ ├── jupyter_iap
│ ├── jupyter_service_accounts
│ ├── kuberay-cluster
│ ├── kuberay-logging
│ ├── kuberay-monitoring
│ ├── kuberay-operator
│ └── kuberay-serviceaccounts
└── tutorial.md
Pour déployer un nouveau cluster GKE, mettez à jour le fichier platform.tfvars
avec les valeurs appropriées, puis exécutez les commandes Terraform ci-dessous :
terraform init
terraform apply -var-file platform.tfvars
La structure du repo ressemble à ceci :
.
├── LICENSE
├── Makefile
├── README.md
├── applications
│ ├── jupyter
│ └── ray
├── contributing.md
├── dcgm-on-gke
│ ├── grafana
│ └── quickstart
├── gke-a100-jax
│ ├── Dockerfile
│ ├── README.md
│ ├── build_push_container.sh
│ ├── kubernetes
│ └── train.py
├── gke-batch-refarch
│ ├── 01_gke
│ ├── 02_platform
│ ├── 03_low_priority
│ ├── 04_high_priority
│ ├── 05_compact_placement
│ ├── 06_jobset
│ ├── Dockerfile
│ ├── README.md
│ ├── cloudbuild-create.yaml
│ ├── cloudbuild-destroy.yaml
│ ├── create-platform.sh
│ ├── destroy-platform.sh
│ └── images
├── gke-disk-image-builder
│ ├── README.md
│ ├── cli
│ ├── go.mod
│ ├── go.sum
│ ├── imager.go
│ └── script
├── gke-dws-examples
│ ├── README.md
│ ├── dws-queues.yaml
│ ├── job.yaml
│ └── kueue-manifests.yaml
├── gke-online-serving-single-gpu
│ ├── README.md
│ └── src
├── gke-tpu-examples
│ ├── single-host-inference
│ └── training
├── indexed-job
│ ├── Dockerfile
│ ├── README.md
│ └── mnist.py
├── jobset
│ └── pytorch
├── modules
│ ├── gke-autopilot-private-cluster
│ ├── gke-autopilot-public-cluster
│ ├── gke-standard-private-cluster
│ ├── gke-standard-public-cluster
│ ├── jupyter
│ ├── jupyter_iap
│ ├── jupyter_service_accounts
│ ├── kuberay-cluster
│ ├── kuberay-logging
│ ├── kuberay-monitoring
│ ├── kuberay-operator
│ └── kuberay-serviceaccounts
├── saxml-on-gke
│ ├── httpserver
│ └── single-host-inference
├── training-single-gpu
│ ├── README.md
│ ├── data
│ └── src
├── tutorial.md
└── tutorials
├── e2e-genai-langchain-app
├── finetuning-llama-7b-on-l4
└── serving-llama2-70b-on-l4-gpus
Ce référentiel contient un modèle Terraform pour exécuter JupyterHub sur Google Kubernetes Engine. Nous avons également inclus quelques exemples de notebooks (sous applications/ray/example_notebooks
), dont un qui sert un modèle GPT-J-6B avec Ray AIR (voir ici pour le notebook original). Pour les exécuter, suivez les instructions sur applications/ray/README.md pour installer un cluster Ray.
Ce module jupyter déploie les ressources suivantes, une fois par utilisateur :
En savoir plus sur JupyterHub sur GKE ici
Ce référentiel contient un modèle Terraform pour exécuter Ray sur Google Kubernetes Engine.
Ce module déploie les éléments suivants, une fois par utilisateur :
En savoir plus sur Ray sur GKE ici